MATLAB

The Language of Technical Computing

Computation
—

Visualization
/1

Programming
1

MATLAB Function Reference
&\ The MathWork
Volume 2: F-O ‘\ e MathWorks

Version 6

X L8

How to Contact The MathWorks:

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive

Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 2: F - O
0 COPYRIGHT 1984 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing For MATLAB 5
June 1997 Online only Revised for 5.1
October 1997 Online only Revised for 5.2
January 1999 Online only Revised for Release 11
June 1999 Second printing For Release 11
June 2001 Online only Revised for 6.1
July 2002 Online only Revised for 6.5 (Release 13)

Septermber 2003 Online only Revised for 6.5.1 (Release 13SP1)

Contents

Functions — By Category

1]

Development Environment 1-2
Startingand Quitting i 1-2
Command Window 1-2
GettingHelp 1-3
Workspace, File, and SearchPath 1-3
Programming Tools i 1-4
SYSteM o 1-5
Performance Improvement Tools and Techniques 1-5

Mathematics 1-6
Arraysand Matrices 1-7
Linear Algebra 1-9
Elementary Math 1-11
Data Analysis and Fourier Transforms 1-13
Polynomials 1-14
Interpolation and Computational Geometry 1-15
Coordinate System Conversioncoouu... 1-16
Nonlinear Numerical Methods 1-16
Specialized Math 1-18
Sparse Matricest 1-18
Math Constants, 1-20

Programmingand Data Types 1-21
Data TYPES . ..ttt 1-21
ATTAYS . . 1-25
Operatorsand Operationsy 1-27
Programming in MATLAB 1-29

File /O . 1-34
Filename Construction 1-34
Opening, Loading, Saving Files 1-34
Low-Level File /O 1-35
TextFiles 1-35
XML DoCUmMENtS 1-35

Contents

Spreadsheets 1-35

ScientificData 1-36
Audio and Audio/Video 1-36
Images 1-37
GraphicCs 1-38
Basic Plotsand Graphs 1-38
Annotating Plots 1-38
Specialized Plotting i 1-39
Bit-Mapped Imagescc i 1-41
Printing 1-41
Handle Graphics 1-42
3-D Visualization 1-44
Surfaceand Mesh Plots 1-44
View Control 1-45
Lighting 1-46
TransparenCyt 1-47
Volume Visualization 1-47
Creating Graphical User Interfaces 1-48
Predefined Dialog Boxes, 1-48
Deploying User Interfaces 1-49
Developing User Interfaces i, 1-49
User Interface Objects i, 1-49
Finding Objects from Callbacks 1-49
GUI Utility Functions i, 1-49
Controlling Program Execution 1-50

Functions - Alphabetical List

Index

Functions — By Category

The MATLAB Function Reference contains descriptions of all MATLAB commands and functions.

Select a category from the following table to see a list of related functions.

Development Environment

Mathematics

Programming and Data
Types

File 1/0

Graphics

3-D Visualization
Creating Graphical User

Interface

External Interfaces

Startup, Command Window, help, editing and debugging, other
general functions

Arrays and matrices, linear algebra, data analysis, other areas of
mathematics

Function/expression evaluation, program control, function handles,
object oriented programming, error handling, operators, data types,
dates and times, timers

General and low-level file 1/O, plus specific file formats, like audio,
spreadsheet, HDF, images

Line plots, annotating graphs, specialized plots, images, printing,
Handle Graphics

Surface and mesh plots, view control, lighting and transparency,
volume visualization.

GUIDE, programming graphical user interfaces.

Java, COM, Serial Port functions.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for lists of their functions

1 Functions — By Category

Development Environment

General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

“Starting and Quitting” Startup and shutdown options
“Command Window” Controlling Command Window
“Getting Help” Finding information

“Workspace, File, and File, search path, variable management
Search Path”

“Programming Tools” Editing and debugging, source control, Notebook

“System” Identifying current computer, license, product
version, and more

“Performance Improving and assessing performance, e.g.,

Improvement Tools and profiling and memory use

Techniques”

Starting and Quitting

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

matlab Start MATLAB (UNIX systems only)

matlabrc MATLAB startup M-file for single user systems or
administrators

quit Terminate MATLAB

startup MATLAB startup M-file for user-defined options

Command Window

clc Clear Command Window

diary Save session to file

dos Execute DOS command and return result

format Control display format for output

home Move cursor to upper left corner of Command Window
more Control paged output for Command Window
notebook Open M-book in Microsoft Word (Windows only)
system Execute operating system command and return result
unix Execute UNIX command and return result

1-2

Development Environment

Getting Help

doc Display online documentation in MATLAB Help browser
demo Access product demos via Help browser

docopt Location of help file directory for UNIX platforms

help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to extensive online help
helpwin Display M-file help, with access to M-file help for all functions
info Display information about The MathWorks or products
lookfor Search for specified keyword in all help entries

support Open MathWorks Technical Support Web page

web Point Help browser or Web browser to file or Web site
whatsnew Display information about MATLAB and toolbox releases

Workspace, File, and Search Path

= “Workspace”

- “File”

« “Search Path”

Workspace
assignin
clear
evalin
exist
openvar
pack

which

who, whos
workspace

File

cd

copyfile
delete

dir

exist
fileattrib
filebrowser
lookfor

Is

Assign value to workspace variable

Remove items from workspace, freeing up system memory
Execute string containing MATLAB expression in a workspace
Check if variable or file exists

Open workspace variable in Array Editor for graphical editing
Consolidate workspace memory

Locate functions and files

List variables in the workspace

Display Workspace browser, a tool for managing the workspace

Change working directory

Copy file or directory

Delete files or graphics objects

Display directory listing

Check if a variable or file exists

Set or get attributes of file or directory

Display Current Directory browser, a tool for viewing files
Search for specified keyword in all help entries

List directory on UNIX

1-3

1 Functions — By Category

1-4

matlabroot Return root directory of MATLAB installation

mkdir Make new directory

movefile Move file or directory

pwd Display current directory

rehash Refresh function and file system caches

rmdir Remove directory

type List file

what List MATLAB specific files in current directory
which Locate functions and files

See also “File 1/O” functions.

Search Path

addpath Add directories to MATLAB search path

genpath Generate path string

partialpath Partial pathname

path View or change the MATLAB directory search path

path2rc Save current MATLAB search path to pathdef.m file
pathtool Open Set Path dialog box to view and change MATLAB path
rmpath Remove directories from MATLAB search path

Programming Tools

<« “Editing and Debugging”
= “Source Control”
= “Notebook”

Editing and Debugging

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
dbquit Quit debug mode

dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints in M-file function
dbtype List M-file with line numbers
dbup Change local workspace context
edit Edit or create M-file

keyboard Invoke the keyboard in an M-file

Development Environment

Source Control

checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system

customverctrl Allow custom source control system
undocheckout Undo previous checkout from source control system

verctrl Version control operations on PC platforms

Notebook

notebook Open M-book in Microsoft Word (Windows only)

System

computer Identify information about computer on which MATLAB is
running

javachk Generate error message based on Java feature support

license Show license number for MATLAB

prefdir Return directory containing preferences, history, and . ini files

usejava Determine if a Java feature is supported in MATLAB

ver Display version information for MathWorks products

version Get MATLAB version number

Performance Improvement Tools and Techniques

memory Help for memory limitations

pack Consolidate workspace memory
profile Optimize performance of M-file code
profreport Generate profile report

rehash Refresh function and file system caches
sparse Create sparse matrix

zeros Create array of all zeros

1-5

1 Functions — By Category

Mathematics

1-6

Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices”

“Linear Algebra”

“Elementary Math”

“Data Analysis and
Fourier Transforms”

“Polynomials”

“Interpolation and
Computational
Geometry”

“Coordinate System
Conversion”

“Nonlinear Numerical
Methods”
“Specialized Math”

“Sparse Matrices”

“Math Constants”

Basic array operators and operations, creation of
elementary and specialized arrays and matrices

Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

Conversions between Cartesian and polar or
spherical coordinates

Differential equations, optimization, integration

Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

Mathematics

Arrays and Matrices

« “Basic Information”

=« “Operators”

= “Operations and Manipulation”
=« “Elementary Matrices and Arrays”
= “Specialized Matrices”

Basic Information

disp
display
isempty
isequal
islogical
isnumeric
issparse
length
ndims
numel
size

Operators

+
+

.'\/>>(-I

N

Display array

Display array

True for empty matrix
True if arrays are identical
True for logical array
True for numeric arrays
True for sparse matrix
Length of vector
Number of dimensions
Number of elements
Size of matrix

Addition

Unary plus
Subtraction

Unary minus

Matrix multiplication
Matrix power

Backslash or left matrix divide

Slash or right matrix divide
Transpose
Nonconjugated transpose

Array multiplication (element-wise)

Array power (element-wise)

Left array divide (element-wise)
Right array divide (element-wise)

Operations and Manipulation

: (colon)
blkdiag

Index into array, rearrange array
Block diagonal concatenation

1-7

1 Functions — By Category

1-8

cat
Cross
cumprod
cumsum
diag
dot

end
find
fliplr
flipud
flipdim
horzcat
ind2sub
ipermute
kron
max

min
permute
prod
repmat
reshape
rot9o0
sort
sortrows
sum
sqrtm
sub2ind
tril
triu
vertcat

Concatenate arrays

Vector cross product

Cumulative product

Cumulative sum

Diagonal matrices and diagonals of matrix
Vector dot product

Last index

Find indices of nonzero elements

Flip matrices left-right

Flip matrices up-down

Flip matrix along specified dimension
Horizontal concatenation

Multiple subscripts from linear index
Inverse permute dimensions of multidimensional array
Kronecker tensor product

Maximum elements of array

Minimum elements of array

Rearrange dimensions of multidimensional array
Product of array elements

Replicate and tile array

Reshape array

Rotate matrix 90 degrees

Sort elements in ascending order

Sort rows in ascending order

Sum of array elements

Matrix square root

Linear index from multiple subscripts
Lower triangular part of matrix

Upper triangular part of matrix

Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

Elementary Matrices and Arrays

= (colon)
blkdiag
diag

eye
freqspace
linspace
logspace

Regularly spaced vector

Construct block diagonal matrix from input arguments
Diagonal matrices and diagonals of matrix

Identity matrix

Frequency spacing for frequency response

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Mathematics

meshgrid
ndgrid
ones
rand
randn
repmat
zeros

Generate X and Y matrices for three-dimensional plots
Arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Replicate and tile array

Create array of all zeros

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal
rosser
toeplitz
vander

wi lkinson

Companion matrix

Test matrices

Hadamard matrix

Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix

Magic square

Pascal matrix

Classic symmetric eigenvalue test problem
Toeplitz matrix

Vandermonde matrix

Wilkinson's eigenvalue test matrix

Linear Algebra

= “Matrix Analysis”

= “Linear Equations”

= “Eigenvalues and Singular Values”

=« “Matrix Logarithms and Exponentials”
= “Factorization”

Matrix Analysis

cond
condeig
det
norm
normest
null
orth
rank
rcond

Condition number with respect to inversion
Condition number with respect to eigenvalues
Determinant

Matrix or vector norm

Estimate matrix 2-norm

Null space

Orthogonalization

Matrix rank

Matrix reciprocal condition number estimate

1-9

1 Functions — By Category

rref
subspace
trace

Reduced row echelon form

Angle between two subspaces

Sum of diagonal elements

Linear Equations

\ and /
chol
cholinc
cond
condest
Ffunm
inv
Iscov
Isgnonneg
lu
luinc
pinv

qr
rcond

Linear equation solution

Cholesky factorization

Incomplete Cholesky factorization

Condition number with respect to inversion
1-norm condition number estimate

Evaluate general matrix function

Matrix inverse

Least squares solution in presence of known covariance
Nonnegative least squares

LU matrix factorization

Incomplete LU factorization

Moore-Penrose pseudoinverse of matrix
Orthogonal-triangular decomposition

Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

balance
cdf2rdf
condeig
eig
eigs
gsvd
hess
poly
polyeig
qz
rsf2csf
schur
svd
svds

Improve accuracy of computed eigenvalues
Convert complex diagonal form to real block diagonal form
Condition number with respect to eigenvalues
Eigenvalues and eigenvectors

Eigenvalues and eigenvectors of sparse matrix
Generalized singular value decomposition
Hessenberg form of matrix

Polynomial with specified roots

Polynomial eigenvalue problem

QZ factorization for generalized eigenvalues
Convert real Schur form to complex Schur form
Schur decomposition

Singular value decomposition

Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm
logm
sqrtm

1-10

Matrix exponential
Matrix logarithm
Matrix square root

Mathematics

Factorization

balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization

cholinc Incomplete Cholesky factorization

cholupdate Rank 1 update to Cholesky factorization

Tu LU matrix factorization

luinc Incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular decomposition

grdelete Delete column or row from QR factorization
grinsert Insert column or row into QR factorization
grupdate Rank 1 update to QR factorization

gz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math

<« “Trigonometric”

= “Exponential”

= “Complex”

=« “Rounding and Remainder”

=« “Discrete Math (e.g., Prime Factors)”

Trigonometric

acos Inverse cosine

acosh Inverse hyperbolic cosine
acot Inverse cotangent

acoth Inverse hyperbolic cotangent
acsc Inverse cosecant

acsch Inverse hyperbolic cosecant
asec Inverse secant

asech Inverse hyperbolic secant
asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine

cosh Hyperbolic cosine

cot Cotangent

coth Hyperbolic cotangent

1-11

1 Functions — By Category

1-12

csc
csch
sec
sech
sin
sinh
tan
tanh

Exponential

exp
log
log2

logl0
nextpow?2
pow2
reallog
realpow
realsqrt
sqrt

Complex

abs
angle
complex
conj
cplxpair
i

imag
isreal
J

real
unwrap

Cosecant
Hyperbolic cosecant
Secant

Hyperbolic secant
Sine

Hyperbolic sine
Tangent

Hyperbolic tangent

Exponential

Natural logarithm

Base 2 logarithm and dissect floating-point numbers into
exponent and mantissa

Common (base 10) logarithm

Next higher power of 2

Base 2 power and scale floating-point number
Natural logarithm for nonnegative real arrays
Array power for real-only output

Square root for nonnegative real arrays
Square root

Absolute value

Phase angle

Construct complex data from real and imaginary parts
Complex conjugate

Sort numbers into complex conjugate pairs
Imaginary unit

Complex imaginary part

True for real array

Imaginary unit

Complex real part

Unwrap phase angle

Rounding and Remainder

Fix
Ffloor
ceil
round
mod
rem
sign

Round towards zero

Round towards minus infinity
Round towards plus infinity
Round towards nearest integer
Modulus after division
Remainder after division
Signum

Mathematics

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime True for prime numbers

Icm Least common multiple

nchoosek All combinations of N elements taken K at a time
perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms

= “Basic Operations”

= “Finite Differences”

< “Correlation”

= “Filtering and Convolution”
< “Fourier Transforms”

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array

mean Average or mean value of arrays
median Median value of arrays

min Minimum elements of array

prod Product of array elements

sort Sort elements in ascending order
sortrows Sort rows in ascending order

std Standard deviation

sum Sum of array elements

trapz Trapezoidal numerical integration
var Variance

Finite Differences

del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1-13

1 Functions — By Category

Correlation

corrcoef Correlation coefficients

cov Covariance matrix

subspace Angle between two subspaces

Filtering and Convolution

conv Convolution and polynomial multiplication

conv2 Two-dimensional convolution

convn N-dimensional convolution

deconv Deconvolution and polynomial division

detrend Linear trend removal

filter Filter data with infinite impulse response (1IR) or finite
impulse response (FIR) filter

filter2 Two-dimensional digital filtering

Fourier Transforms

abs Absolute value and complex magnitude

angle Phase angle

fft One-dimensional discrete Fourier transform

2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier Transform

fftshift Shift DC component of discrete Fourier transform to center of
spectrum

ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse multidimensional discrete Fourier transform

ifftshift Inverse fast Fourier transform shift

nextpow2 Next power of two

unwrap Correct phase angles

Polynomials

conv Convolution and polynomial multiplication

deconv Deconvolution and polynomial division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Analytic polynomial integration

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction expansion and polynomial

1-14

Mathematics

roots

coefficients

Polynomial roots

Interpolation and Computational Geometry

= “Interpolation”
=« “Delaunay Triangulation and Tessellation”

« “Convex Hull”

= “Voronoi Diagrams”

« “Domain Generation”

Interpolation

dsearch
dsearchn
griddata
griddata3

griddatan
interpl
interp2
interp3
interpft

interpn
meshgrid

mkpp
ndgrid

pchip
ppval
spline
tsearchn
unmkpp

Search for nearest point

Multidimensional closest point search

Data gridding

Data gridding and hypersurface fitting for three-dimensional
data

Data gridding and hypersurface fitting (dimension >= 2)
One-dimensional data interpolation (table lookup)
Two-dimensional data interpolation (table lookup)
Three-dimensional data interpolation (table lookup)
One-dimensional interpolation using fast Fourier transform
method

Multidimensional data interpolation (table lookup)
Generate X and Y matrices for three-dimensional plots
Make piecewise polynomial

Generate arrays for multidimensional functions and
interpolation

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
Piecewise polynomial evaluation

Cubic spline data interpolation

Multidimensional closest simplex search

Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay
delaunay3
delaunayn
dsearch
dsearchn

Delaunay triangulation
Three-dimensional Delaunay tessellation
Multidimensional Delaunay tessellation
Search for nearest point
Multidimensional closest point search

1-15

1 Functions — By Category

1-16

tetramesh
trimesh
triplot
trisurf
tsearch
tsearchn

Convex Hull

convhull
convhulln
patch
plot
trisurf

Tetrahedron mesh plot

Triangular mesh plot

Two-dimensional triangular plot
Triangular surface plot

Search for enclosing Delaunay triangle
Multidimensional closest simplex search

Convex hull
Multidimensional convex hull
Create patch graphics object
Linear two-dimensional plot
Triangular surface plot

Voronoi Diagrams

dsearch
patch
plot
voronoi
voronoin

Search for nearest point

Create patch graphics object

Linear two-dimensional plot
Voronoi diagram

Multidimensional Voronoi diagrams

Domain Generation

meshgrid
ndgrid

Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and

interpolation

Coordinate System Conversion

Cartesian

cart2sph
cart2pol
pol2cart
sph2cart

Transform Cartesian to spherical coordinates

Transform Cartesian to polar coordinates
Transform polar to Cartesian coordinates

Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods

= “Ordinary Differential Equations (IVP)”
= “Delay Differential Equations”

=« “Boundary Value Problems”

Mathematics

= “Partial Differential Equations”
=« “Optimization”
= “Numerical Integration (Quadrature)”

Ordinary Differential Equations (IVP)

deval Evaluate solution of differential equation problem

odel13 Solve non-stiff differential equations, variable order method

odel5s Solve stiff ODEs and DAEs Index 1, variable order method

ode23 Solve non-stiff differential equations, low order method

ode23s Solve stiff differential equations, low order method

ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal
rule

ode23th Solve stiff differential equations, low order method

ode45 Solve non-stiff differential equations, medium order method

odeget Get ODE options parameters

odeset Create/alter ODE options structure

Delay Differential Equations

dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure

Boundary Value Problems

bvp4c Solve two-point boundary value problems for ODEs by
collocation

bvpget Get BVP options parameters

bvpset Create/alter BVP options structure

deval Evaluate solution of differential equation problem

Partial Differential Equations

pdepe Solve initial-boundary value problems for parabolic-elliptic
PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization

fminbnd Scalar bounded nonlinear function minimization

fminsearch Multidimensional unconstrained nonlinear minimization, by
Nelder-Mead direct search method

fzero Scalar nonlinear zero finding

Isgnonneg Linear least squares with nonnegativity constraints

1-17

1 Functions — By Category

optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)

quad Numerically evaluate integral, adaptive Simpson quadrature
(low order)

quadl Numerically evaluate integral, adaptive Lobatto quadrature
(high order)

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
bessel j Bessel function of first kind

besselk Modified Bessel function of second kind
bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first and second kind
erf Error function

erfc Complementary error function

erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function

expint Exponential integral

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of gamma function
legendre Associated Legendre functions

psi Psi (polygamma) function

Sparse Matrices

<« “Elementary Sparse Matrices”
= “Full to Sparse Conversion”
= “Working with Sparse Matrices”

1-18

Mathematics

= “Reordering Algorithms”

= “Linear Algebra”

= “Linear Equations (Iterative Methods)”
<« “Tree Operations”

Elementary Sparse Matrices

spdiags
speye
sprand
sprandn
sprandsym

Sparse matrix formed from diagonals
Sparse identity matrix

Sparse uniformly distributed random matrix
Sparse normally distributed random matrix
Sparse random symmetric matrix

Full to Sparse Conversion

find

full
sparse
spconvert

Find indices of nonzero elements

Convert sparse matrix to full matrix
Create sparse matrix

Import from sparse matrix external format

Working with Sparse Matrices

issparse
nnz
nonzeros
nzmax
spalloc
spfun
spones
spparms

spy

True for sparse matrix

Number of nonzero matrix elements

Nonzero matrix elements

Amount of storage allocated for nonzero matrix elements
Allocate space for sparse matrix

Apply function to nonzero matrix elements

Replace nonzero sparse matrix elements with ones

Set parameters for sparse matrix routines

Visualize sparsity pattern

Reordering Algorithms

colamd
colmmd
colperm
dmperm
randperm
symamd
symmmd
symrcm

Column approximate minimum degree permutation
Column minimum degree permutation

Column permutation

Dulmage-Mendelsohn permutation

Random permutation

Symmetric approximate minimum degree permutation
Symmetric minimum degree permutation

Symmetric reverse Cuthill-McKee permutation

1-19

1 Functions — By Category

Linear Algebra

cholinc Incomplete Cholesky factorization

condest 1-norm condition number estimate

eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization

normest Estimate matrix 2-norm

sprank Structural rank

svds Singular values and vectors of sparse matrix

Linear Equations (lterative Methods)

bicg BiConjugate Gradients method

bicgstab BiConjugate Gradients Stabilized method

cgs Conjugate Gradients Squared method

gmres Generalized Minimum Residual method

Isqr LSQR implementation of Conjugate Gradients on Normal
Equations

minres Minimum Residual method

pcg Preconditioned Conjugate Gradients method

gmr Quasi-Minimal Residual method

spaugment Form least squares augmented system

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity, c

j Imaginary unit

NaN Not-a-Number

pi Ratio of a circle’s circumference to its diameter, Tt
realmax Largest positive floating-point number

realmin Smallest positive floating-point number

1-20

Programming and Data Types

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB

programs.

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

Data Types

= “Numeric”

= “Characters and Strings”
= “Structures”

= “Cell Arrays”

<« “Data Type Conversion”
= “Determine Data Type”

Numeric

[1 Array constructor

cat Concatenate arrays

class Return object’s class name (e.g., numeric)

find Find indices and values of nonzero array elements
ipermute Inverse permute dimensions of multidimensional array
isa Detect object of given class (e.g., numeric)

isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
isnumeric Determine if item is numeric array

isreal Determine if all array elements are real numbers
permute Rearrange dimensions of multidimensional array

1-21

1 Functions — By Category

1-22

reshape
squeeze
zeros

Reshape array
Remove singleton dimensions from array
Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings

Describes MATLAB string handling

Creating and Manipulating Strings

blanks
char
cellstr
datestr
deblank
lower
sprintf
sscanf
strcat
strjust
strread
strrep
strvcat
upper

Create string of blanks

Create character array (string)

Create cell array of strings from character array
Convert to date string format

Strip trailing blanks from the end of string
Convert string to lower case

Write formatted data to string

Read string under format control

String concatenation

Justify character array

Read formatted data from string

String search and replace

Vertical concatenation of strings

Convert string to upper case

Comparing and Searching Strings

class
findstr
isa
iscellstr
ischar
isletter
isspace
regexp
regexpi
regexprep
strcmp
strcmpi
strfind
strmatch
strncmp

Return object’s class name (e.g., char)

Find string within another, longer string
Detect object of given class (e.g., char)
Determine if item is cell array of strings
Determine if item is character array

Detect array elements that are letters of the alphabet
Detect elements that are ASCII white spaces
Match regular expression

Match regular expression, ignoring case
Replace string using regular expression
Compare strings

Compare strings, ignoring case

Find one string within another

Find possible matches for string

Compare first n characters of strings

Programming and Data Types

strncmpi
strtok

Compare first n characters of strings, ignoring case
First token in string

Evaluating String Expressions

eval
evalc
evalin

Structures

cell2struct
class

deal
fieldnames
isa

isequal
isfield
isstruct
orderfields
rmField
struct
struct2cell

Cell Arrays
{3}

cell
cellfun
cellstr
cell2mat
cell2struct
celldisp
cellplot
class

deal

isa

iscell
iscellstr
isequal
mat2cell
num2cell
struct2cell

Execute string containing MATLAB expression
Evaluate MATLAB expression with capture
Execute string containing MATLAB expression in workspace

Cell array to structure array conversion
Return object’s class name (e.g., struct)
Deal inputs to outputs

Field names of structure

Detect object of given class (e.g., struct)
Determine if arrays are numerically equal
Determine if item is structure array field
Determine if item is structure array
Order fields of a structure array

Remove structure fields

Create structure array

Structure to cell array conversion

Construct cell array

Construct cell array

Apply function to each element in cell array
Create cell array of strings from character array
Convert cell array of matrices into single matrix
Cell array to structure array conversion

Display cell array contents

Graphically display structure of cell arrays
Return object’s class name (e.g., cell)

Deal inputs to outputs

Detect object of given class (e.g., cell)
Determine if item is cell array

Determine if item is cell array of strings
Determine if arrays are numerically equal
Divide matrix up into cell array of matrices
Convert numeric array into cell array

Structure to cell array conversion

1-23

1 Functions — By Category

1-24

Data Type Conversion

Numeric

double Convert to double-precision

int8 Convert to signed 8-bit integer
intl6 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision

uints Convert to unsigned 8-bit integer
uintlé Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number

str2num Convert string to number

Numeric to String

char Convert to character array (string)

dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string

mat2str Convert a matrix to string

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array

datestr Convert serial date number to string

func2str Convert function handle to function name string
logical Convert numeric to logical array

mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array

str2func Convert function name string to function handle

struct2cell Convert structure to cell array

Programming and Data Types

Determine Data Type

is* Detect state

isa Detect object of given MATLAB class or Java class
iscell Determine if item is cell array

iscellstr Determine if item is cell array of strings
ischar Determine if item is character array

isfield Determine if item is character array

isjava Determine if item is Java object

islogical Determine if item is logical array

isnumeric Determine if item is numeric array

isobject Determine if item is MATLAB OOPs object
isstruct Determine if item is MATLAB structure array
Arrays

= “Array Operations”

< “Basic Array Information”
= “Array Manipulation”

=« “Elementary Arrays”

Array Operations

L1 Array constructor

, Array row element separator

: Array column element separator
: Specify range of array elements
end Indicate last index of array

+ Addition or unary plus

- Subtraction or unary minus
Array multiplication

Array right division

Array left division

Array power

Array (nonconjugated) transpose

S N

Basic Array Information

disp Display text or array

display Overloaded method to display text or array
isempty Determine if array is empty

isequal Determine if arrays are numerically equal

isequalwithequalnansTest for equality, treating NaNs as equal

1-25

1 Functions — By Category

1-26

isnumeric
islogical
length
ndims
numel
size

Determine if item is numeric array
Determine if item is logical array

Length of vector

Number of array dimensions

Number of elements in matrix or cell array
Array dimensions

Array Manipulation

blkdiag
cat
circshift
find
fliplr
flipud
flipdim
horzcat
ind2sub
ipermute
permute
repmat
reshape
rot9o0
shiftdim
sort
sortrows
squeeze
sub2ind
vertcat

Specify range of array elements

Construct block diagonal matrix from input arguments
Concatenate arrays

Shift array circularly

Find indices and values of nonzero elements

Flip matrices left-right

Flip matrices up-down

Flip array along specified dimension

Horizontal concatenation

Subscripts from linear index

Inverse permute dimensions of multidimensional array
Rearrange dimensions of multidimensional array
Replicate and tile array

Reshape array

Rotate matrix 90 degrees

Shift dimensions

Sort elements in ascending order

Sort rows in ascending order

Remove singleton dimensions

Single index from subscripts

Horizontal concatenation

Elementary Arrays

blkdiag
eye
linspace
logspace
meshgrid
ndgrid

ones
rand

randn
Zeros

Regularly spaced vector

Construct block diagonal matrix from input arguments
Identity matrix

Generate linearly spaced vectors

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and
interpolation

Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create array of all zeros

Programming and Data Types

Operators and Operations

=« “Special Characters”

= “Arithmetic Operations”

-« “Bit-wise Operations”

= “Relational Operations”

= “Logical Operations”

= “Set Operations”

= “Date and Time Operations”

Special Characters

oA

el \

Specify range of array elements

Pass function arguments, or prioritize operations
Construct array

Construct cell array

Decimal point, or structure field separator
Continue statement to next line

Array row element separator

Array column element separator

Insert comment line into code

Command to operating system
Assignment

Arithmetic Operations

+

>N *

s N

Plus

Minus

Decimal point

Assignment

Matrix multiplication

Matrix right division

Matrix left division

Matrix power

Matrix transpose

Array multiplication (element-wise)
Array right division (element-wise)
Array left division (element-wise)
Array power (element-wise)

Array transpose

1-27

1 Functions — By Category

1-28

Bit-wise Operations

bitand
bitcmp
bitor
bitmax
bitset
bitshift
bitget
bitxor

Bit-wise AND

Bit-wise complement

Bit-wise OR

Maximum floating-point integer
Set bit at specified position
Bit-wise shift

Get bit at specified position
Bit-wise XOR

Relational Operations

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal to

Not equal to

Logical Operations

&&

I
&

all

any
false
find

is*

isa
iskeyword
isvarname
logical
true

Xor

Logical AND

Logical OR

Logical AND for arrays

Logical OR for arrays

Logical NOT

Test to determine if all elements are nonzero
Test for any nonzero elements

False array

Find indices and values of nonzero elements
Detect state

Detect object of given class

Determine if string is MATLAB keyword
Determine if string is valid variable name
Convert numeric values to logical

True array

Logical EXCLUSIVE OR

Set Operations

intersect

ismember
setdiff
issorted

Set intersection of two vectors

Detect members of set

Return set difference of two vectors
Determine if set elements are in sorted order

Programming and Data Types

setxor
union
unique

Set exclusive or of two vectors
Set union of two vectors
Unique elements of vector

Date and Time Operations

calendar
clock
cputime
date
datenum
datestr
datevec
eomday
etime
now

tic, toc
weekday

Calendar for specified month
Current time as date vector
Elapsed CPU time

Current date string

Serial date number

Convert serial date number to string
Date components

End of month

Elapsed time

Current date and time
Stopwatch timer

Day of the week

Programming in MATLAB

= “M-File Functions and Scripts”

= “Evaluation of Expressions and Functions”
<« “Timer Functions”

=« “Variables and Functions in Memory”

= “Control Flow”

< “Function Handles”

= “Object-Oriented Programming”

< “Error Handling”

= “MEX Programming”

M-File Functions and Scripts

)
%

depfun
depdir

function
input

Pass function arguments

Insert comment line into code

Continue statement to next line

List dependent functions of M-file or P-file
List dependent directories of M-file or P-file
Function M-files

Request user input

1-29

1 Functions — By Category

1-30

inputname
mFilename

Input argument name
Name of currently running M-file

namelengthmax Return maximum identifier length

nargin
nargout
nargchk
nargoutchk
pcode
script
varargin
varargout

Number of function input arguments
Number of function output arguments
Check number of input arguments
Validate number of output arguments
Create preparsed pseudocode file (P-file)
Describes script M-file

Accept variable number of arguments
Return variable number of arguments

Evaluation of Expressions and Functions

builtin
cellfun
eval
evalc
evalin
feval
iskeyword
isvarname
pause

run
script
symvar
tic, toc

Execute builtin function from overloaded method
Apply function to each element in cell array
Interpret strings containing MATLAB expressions
Evaluate MATLAB expression with capture
Evaluate expression in workspace

Evaluate function

Determine if item is MATLAB keyword
Determine if item is valid variable name

Halt execution temporarily

Run script that is not on current path

Describes script M-file

Determine symbolic variables in expression
Stopwatch timer

Timer Functions

delete
disp
get
isvalid
set
start
startat
stop
timer
timerfind
wait

Delete timer object from memory

Display information about timer object
Retrieve information about timer object properties
Determine if timer object is valid

Display or set timer object properties

Start a timer

Start a timer at a specific timer

Stop a timer

Create a timer object

Return an array of all timer object in memory
Block command line until timer completes

Variables and Functions in Memory

assignin

Assign value to workspace variable

Programming and Data Types

global Define global variables

inmem Return names of functions in memory

isglobal Determine if item is global variable

mislocked True if M-file cannot be cleared

mlock Prevent clearing M-file from memory

munlock Allow clearing M-file from memory

name lengthmax Return maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system caches

Control Flow

break Terminate execution of for loop or while loop
case Case switch

catch Begin catch block

continue Pass control to next iteration of for or while loop
else Conditionally execute statements

elseif Conditionally execute statements

end Terminate conditional statements, or indicate last index
error Display error messages

for Repeat statements specific number of times

if Conditionally execute statements

otherwise Default part of switch statement

return Return to invoking function

switch Switch among several cases based on expression
try Begin try block

while Repeat statements indefinite number of times

Function Handles

class Return object’s class name (e.g. function_handle)
feval Evaluate function
function_handle

Describes function handle data type

functions Return information about function handle

func2str Constructs function name string from function handle
isa Detect object of given class (e.g. function_handle)
isequal Determine if function handles are equal

str2func Constructs function handle from function name string

1-31

1 Functions — By Category

1-32

Object-Oriented Programming

MATLAB Classes and Objects

class
fieldnames
inferiorto
isa
isobject
loadobj
methods
methodsview
saveobj
subsasgn
subsindex
subsref
substruct
superiorto

Create object or return class of object

List public fields belonging to object,

Establish inferior class relationship

Detect object of given class

Determine if item is MATLAB OOPs object
User-defined extension of load function for user objects
Display method names

Displays information on all methods implemented by class
User-defined extension of save function for user objects
Overloaded method for A(1)=B, A{1}=B, and A.field=B
Overloaded method for X(A)

Overloaded method for A(1), A{1} and A.field

Create structure argument for subsasgn or subsref
Establish superior class relationship

Java Classes and Objects

cell

class
clear
depfun
exist
Ffieldnames
im2java
import
inmem

isa

isjava
JavaArray
JjavaMethod
jJavaObject
methods
methodsview
which

Convert Java array object to cell array

Return class name of Java object

Clear Java packages import list

List Java classes used by M-file

Detect if item is Java class

List public fields belonging to object

Convert image to instance of Java image object
Add package or class to current Java import list
List names of Java classes loaded into memory
Detect object of given class

Determine whether object is Java object
Constructs Java array

Invokes Java method

Constructs Java object

Display methods belonging to class

Display information on all methods implemented by class
Display package and class name for method

Error Handling

catch
error
ferror

Begin catch block of try/catch statement
Display error message
Query MATLAB about errors in file input or output

Programming and Data Types

lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error

try Begin try block of try/catch statement

warning Display warning message

MEX Programming

dbmex Enable MEX-file debugging

inmem Return names of currently loaded MEX-files

mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1-33

1 Functions — By Category

File 170

Functions to read and write data to files of different format types.

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File 1/0” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted 1/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,

Wave, AVI files

“Images” Graphics files

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction

fileparts Return parts of filename

filesep Return directory separator for this platform
fullfile Build full filename from parts

tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

Opening, Loading, Saving Files

importdata Load data from various types of files

load Load all or specific data from MAT or ASCII file

open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file

winopen Open file in appropriate application (Windows only)

1-34

File 17O

Low-Level File I/70

fclose Close one or more open files

feof Test for end-of-file

ferror Query MATLAB about errors in file input or output

fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files

fprintf Write formatted data to file

fread Read binary data from file

frewind Rewind open file

fscanf Read formatted data from file

fseek Set file position indicator

ftell Get file position indicator

fwrite Write binary data to file

Text Files

csvread Read numeric data from text file, using comma delimiter
cswwrite Write numeric data to text file, using comma delimiter
dImread Read numeric data from text file, specifying your own delimiter
dimwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, specifying format for each value

XML Documents

xmlread Parse XML document

xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine
Spreadsheets

Microsoft Excel Functions

xIsfinfo Determine if file contains Microsoft Excel (.xIs) spreadsheet
xlIsread Read Microsoft Excel spreadsheet file (.x1s)

Lotus123 Functions

wklread Read Lotus123 WK1 spreadsheet file into matrix
wklwrite Write matrix to Lotus123 WK1 spreadsheet file

1-35

1 Functions — By Category

Scientific Data

Common Data Format (CDF)

cdfinfo Return information about CDF file
cdfread Read CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)

hdf Interface to HDF files
hdfinfo Return information about HDF or HDF-EOS file
hdfread Read HDF file

Audio and Audio/Video

General

audioplayer Create audio player object
audiorecorder Perform real-time audio capture

beep Produce beep sound

lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions

wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

1-36

File 17O

Audio Video Interleaved (AVI) Functions

addframe
avifile
aviinfo
aviread
close
movie2avi

|IT1Ei§JEES
im2java
imfinfo
imread
imvrite

Add frame to AVI file

Create new AVI file

Return information about AVI file
Read AVI file

Close AVI file

Create AVI movie from MATLAB movie

Convert image to instance of Java image object
Return information about graphics file

Read image from graphics file

Write image to graphics file

1-37

1 Functions — By Category

Graphics

2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,

finding handles

Basic Plots and Graphs

box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars

hold Hold current graph

LineSpec Line specification syntax

loglog Plot using log-log scales

polar Polar coordinate plot

plot Plot vectors or matrices.

plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semi logx Semi-log scale plot

semi logy Semi-log scale plot

subplot Create axes in tiled positions

Annotating Plots

clabel Add contour labels to contour plot

datetick Date formatted tick labels

gtext Place text on 2-D graph using mouse

legend Graph legend for lines and patches

texlabel Produce the TeX format from character string

1-38

Graphics

title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Specialized Plotting

=« “Area, Bar, and Pie Plots”

< “Contour Plots”

= “Direction and Velocity Plots”
= “Discrete Data Plots”

= “Function Plots”

= “Histograms”

= “Polygons and Surfaces”

= “Scatter Plots”

< “Animation”

Area, Bar, and Pie Plots

area Area plot

bar Vertical bar chart

barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char

pie Pie plot

pie3 3-D pie plot

Contour Plots

contour Contour (level curves) plot
contour3 3-D contour plot

contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter

ezcontourf Easy to use filled contour plotter
Direction and Velocity Plots

comet Comet plot
comet3 3-D comet plot

1-39

1 Functions — By Category

1-40

compass
feather
quiver

quiver3

Compass plot

Feather plot

Quiver (or velocity) plot
3-D quiver (or velocity) plot

Discrete Data Plots

stem
stem3
stairs

Function Plots

ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
fplot

Histograms
hist

histc

rose

Plot discrete sequence data
Plot discrete surface data
Stairstep graph

Easy to use contour plotter

Easy to use filled contour plotter

Easy to use 3-D mesh plotter

Easy to use combination mesh/contour plotter
Easy to use function plotter

Easy to use 3-D parametric curve plotter

Easy to use polar coordinate plotter

Easy to use 3-D colored surface plotter

Easy to use combination surface/contour plotter
Plot a function

Plot histograms
Histogram count
Plot rose or angle histogram

Polygons and Surfaces

convhull
cylinder
delaunay
dsearch
ellipsoid
fill
fill3
inpolygon
pcolor
polyarea
ribbon
slice
sphere

Convex hull

Generate cylinder

Delaunay triangulation

Search Delaunay triangulation for nearest point
Generate ellipsoid

Draw filled 2-D polygons

Draw filled 3-D polygons in 3-space
True for points inside a polygonal region
Pseudocolor (checkerboard) plot

Area of polygon

Ribbon plot

Volumetric slice plot

Generate sphere

Graphics

tsearch
voronoi
waterfall

Scatter Plots

plotmatrix
scatter
scatter3

Animation

frame2im
getframe
im2frame
movie
noanimate

Search for enclosing Delaunay triangle
Voronoi diagram
Waterfall plot

Scatter plot matrix
Scatter plot
3-D scatter plot

Convert movie frame to indexed image
Capture movie frame

Convert image to movie frame

Play recorded movie frames

Change EraseMode of all objects to normal

Bit-Mapped Images

frame2im
image
imagesc
imfinfo
imformats
im2frame
im2java
imread
imvrite
ind2rgb

Printing
frameedit
orient
pagesetupdlg
print
printdlg
printopt
printpreview
saveas

Convert movie frame to indexed image

Display image object

Scale data and display image object
Information about graphics file

Manage file format registry

Convert image to movie frame

Convert image to instance of Java image object
Read image from graphics file

Write image to graphics file

Convert indexed image to RGB image

Edit print frame for Simulink and Stateflow diagram
Hardcopy paper orientation

Page position dialog box

Print graph or save graph to file

Print dialog box

Configure local printer defaults

Preview figure to be printed

Save figure to graphic file

1-41

1 Functions — By Category

1-42

Handle Graphics

=« Finding and Identifying Graphics Objects
=« Object Creation Functions

= Figure Windows
< Axes Operations

Finding and Identifying Graphics Objects

allchild
copyobj
delete
findall
figflag
findfigs
findobj
gca

gcbo
gcbf

gco

get
ishandle
set

Find all children of specified objects

Make copy of graphics object and its children
Delete files or graphics objects

Find all graphics objects (including hidden handles)
Test if figure is on screen

Display off-screen visible figure windows

Find objects with specified property values

Get current Axes handle

Return object whose callback is currently executing
Return handle of figure containing callback object
Return handle of current object

Get object properties

True if value is valid object handle

Set object properties

Object Creation Functions

axes
figure
image
light

line

patch
rectangle
rootobject
surface
text

Create axes object

Create figure (graph) windows

Create image (2-D matrix)

Create light object (illuminates Patch and Surface)
Create line object (3-D polylines)

Create patch object (polygons)

Create rectangle object (2-D rectangle)

List of root properties

Create surface (quadrilaterals)

Create text object (character strings)

uicontextmenu Create context menu (popup associated with object)

Figure Windows

capture
clc
clf

Screen capture of the current figure
Clear figure window
Clear figure

Graphics

close
closereq
drawnow
figflag
gcf
hgload
hgsave
newplot
opengl
refresh
saveas

Close specified window

Default close request function

Complete any pending drawing

Test if figure is on screen

Get current figure handle

Load graphics object hierarchy from a FIG-file
Save graphics object hierarchy to a FIG-file
Graphics M-file preamble for NextPlot property
Change automatic selection mode of OpenGL rendering
Refresh figure

Save figure or model to desired output format

Axes Operations

axis
box
cla
gca
grid
ishold

Plot axis scaling and appearance
Display axes border

Clear Axes

Get current Axes handle

Grid lines for 2-D and 3-D plots
Get the current hold state

1-43

1 Functions — By Category

3-D Visualization

Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

Surface and Mesh Plots

= Creating Surfaces and Meshes
< Domain Generation

= Color Operations

<« Colormaps

Creating Surfaces and Meshes

hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

1-44

3-D Visualization

Color Operations

brighten Brighten or darken color map

caxis Pseudocolor axis scaling
colormapeditorStart colormap editor

colorbar Display color bar (color scale)

colordef Set up color defaults

colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color

graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion

rgbplot Plot color map

shading Color shading mode

spinmap Spin the colormap

surfnorm 3-D surface normals

whitebg Change axes background color for plots
Colormaps

autumn Shades of red and yellow color map

bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map

flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map

hot Black-red-yellow-white color map

hsv Hue-saturation-value (HSV) color map

jet Variant of HSV

lines Line color colormap

prism Colormap of prism colors

spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

View Control

= Controlling the Camera Viewpoint

= Setting the Aspect Ratio and Axis Limits
= Object Manipulation

= Selecting Region of Interest

1-45

1 Functions — By Category

1-46

Controlling the Camera Viewpoint

camdolly Move camera position and target
camlookat View specific objects

camorbit Orbit about camera target

campan Rotate camera target about camera position
campos Set or get camera position

camproj Set or get projection type

camroll Rotate camera about viewing axis
camtarget Set or get camera target

camup Set or get camera up-vector

camva Set or get camera view angle

camzoom Zoom camera in or out

view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
x1lim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation

reset Reset axis or figure

rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizelnteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest

dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

Lighting

camlight Cerate or position Light

light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode

material Material reflectance mode

3-D Visualization

Transparency

alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D vector field

contourslice Draw contours in volume slice plane

curl Compute curl and angular velocity of vector field

divergence Compute divergence of vector field

flow Generate scalar volume data

interpstreamspeedinterpolate streamline vertices from vector-field
magnitudes

isocaps Compute isosurface end-cap geometry

isocolors Compute colors of isosurface vertices

isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces

slice Draw slice planes in volume
smooth3 Smooth 3-D data

stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data

streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and
vector)

1-47

1 Functions — By Category

1-48

Creating Graphical User Interfaces

Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes Dialog boxes for error, user input, waiting, etc.

Deploying User

Interfaces

Developing User

Interfaces

Launching GUIs, creating the handles structure

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from Finding object handles from within callbacks
Callbacks functions

GUI Utility Functions Moving objects, text wrapping

Controlling Program Wait and resume based on user input
Execution

Predefined Dialog Boxes

dialog
errordlg
helpdlg
inputdlg
listdlg
msgbox
pagedlg
printdlg
questdlg
uigetdir
uigetfile
uiputfile
uisetcolor
uisetfont
waitbar
warndlg

Create dialog box

Create error dialog box

Display help dialog box

Create input dialog box

Create list selection dialog box

Create message dialog box

Display page layout dialog box

Display print dialog box

Create question dialog box

Display dialog box to retrieve name of directory
Display dialog box to retrieve name of file for reading
Display dialog box to retrieve name of file for writing
Set ColorSpec using dialog box

Set font using dialog box

Display wait bar

Create warning dialog box

Creating Graphical User Interfaces

Deploying User Interfaces

guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces

guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data

getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input

ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects

menu Generate menu of choices for user input
uicontextmenu Create context menu

uicontrol Create user interface control

uimenu Create user interface menu

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Display off-screen visible figure windows

findobj Find specific graphics object

gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

GUI Utility Functions

selectmoveresizeSelect, move, resize, or copy axes and uicontrol graphics
objects
textwrap Return wrapped string matrix for given uicontrol

1-49

1 Functions — By Category

Controlling Program Execution

uiresume Resumes program execution halted with uiwait
uiwait Halts program execution, restart with uiresume

1-50

Functions — Alphabetical
List

2 Functions — Alphabetical List

2-2

factor e e 2-12
factorial 2-13
false 2-14
felose . . o 2-15
fclose (serial) 2-16
feather 2-17
feOf e 2-19
L= (0 2-20
feval 2-21
1 2-23
L1722 2-27
111 2-28
tshift ... 2-29
fgetl .. e 2-30
fgetl (serial) 2-31
fetS . 2-33
fgets(serial) 2-34
fieldnames 2-36
figflag 2-38
figure e 2-40
Figure Properties, 2-49
fileformats 2-74
fileattrib 2-77
filebrowser 2-83
fileparts 2-84
filesep .. 2-85
fill e 2-86
fill3 e 2-89
filter .. 2-92
filter2 .. 2-95
fiNd .. 2-96
findall 2-98
findfigs 2-99
findobj 2-100
findstr e 2-102
finish ... 2-103
fitsinfo e 2-104

fitsread 2-112

X 2-114
flipdim .. 2-115
lplr 2-116
flipud ... 2-117
floor ... 2-119
flOpS ..o e 2-120
oW ..o 2-121
N e 2-122
fminbnd e 2-125
fMINS . . e 2-128
fminsearch e 2-131
fopeN .. e 2-135
fopen(serial) 2-138
0 2-140
format 2-142
fplot . 2-145
fprintf 2-149
fprintf (serial) 2-155
frame2im 2-158
frameedit e 2-159
fread e 2-162
fread (serial) 2-167
freeserial 2-171
fregspace e 2-172
frewind 2-173
fscanf e 2-174
fscanf(serial) 2-177
fSEEK . e 2-180
ftell .. e 2-182
full 2-183
fullfile 2-184
fUNC2Str ... e 2-185
function ... e 2-186
function_handle (@)c i 2-188
fUNCLIONS 2-190
UNM e 2-191

2-3

2 Functions — Alphabetical List

TWrite . 2-193
fwrite (serial) e 2-194
fZero .. 2-198
gallery ... 2-202
gamma, gammainc, gammaln 2-223
o7 W 2-225
gebf L 2-226
gCbo .. e 2-227
OCA o 2-228
OCF 2-230
000 ittt 2-231
genpath 2-232
=L A 2-235
get (COM) .. e 2-238
get(serial) 2-240
get (Limer) 2-242
getappdata 2-244
GETENV . ..ot 2-245
getfield e 2-246
getframe e 2-248
OINPUL . ..o e 2-251
global 2-252
OMEES o 2-254
OPIOL .. 2-259
gradient e 2-261
OraymMON . ..ottt e 2-264
Orid .. 2-265
griddata 2-266
griddata3 2-269
griddatan 2-270
OSVA . e 2-272
01 1= < 2-277
guidata 2-278
gUIde . . 2-280
guihandles 2-281
hadamard 2-282
hankel 2-283

2-4

hdf . 2-284

hdfinfo 2-286
hdfread e 2-293
hdftool e 2-304
help ... 2-305
helpbrowser 2-308
helpdesk e 2-310
helpdlg e 2-311
helpwin e 2-313
eSS . e 2-314
hex2dec 2-316
hex2num 2-317
hgload e 2-318
hgsave 2-319
hidden 2-320
hilb .. 2-321
NSt . 2-322
hiStC .. e 2-325
hold e 2-326
home . .. 2-327
horzeat 2-328
NSV2rgb . .. 2-330
L 2-331
) 2-332
1 2-335
1722 2-336
N . 2-337
ifftshift 2-338
im2frame e 2-339
IM2JAaVa . . . 2-340
Mg .. e 2-342
Mg ... e 2-343
Image Properties 2-350
IMAOESC . . o oot e 2-359
imfinfo 2-362
imformats 2-366
IMPOIt .. e 2-368

2-5

2 Functions — Alphabetical List

2-6

importdata 2-370
iImread 2-371
IMWEITE . .. 2-379
ind2rgb 2-388
ind2sub 2-389
INf . 2-392
inferiorto 2-393
INfO .. 2-394
inline 2-395
INMEM .. e 2-398
iINpolygon 2-399
INPUL . L 2-400
inputdlg 2-401
INPUENAME e 2-403
INSPECT . .. 2-404
instrcallback 2-406
instrfind 2-407
INE2Str ... 2-409
int8, intl6, int32,int64 2-410
INterpl ... e 2-412
INEEIPZ .. 2-417
INTErPS .. 2-420
INterpft 2-422
INEErPN 2-423
interpstreamspeed 2-425
INtErsect 2-429
NV 2-430
invhilb 2-433
iNnvoke (COM)o e 2-434
IPermuUte 2-436
S e 2-437
S 2-439
isappdata 2-441
iscell 2-442
iscellstr 2-443
ISChar 2-444
ISEBMPLY . . 2-445

isequal 2-446

isequalwithequalnans 2-448
isevent (COM) i 2-449
isfield e 2-450
isfinite e 2-451
isglobal 2-452
ishandle 2-453
ishold 2-454
ISINf .. e 2-455
IS AV .. 2-456
iskeyword 2-457
isletter 2-459
islogical e 2-460
Ismember 2-461
ismethod (COM) 2-463
ISNAN . .. e 2-464
ISNUMEKIC . .ottt e e e e e e 2-465
isobject 2-466
ISOCAPS .+ v ittt e e 2-467
1SOCOIOrS . . e 2-469
isonormals 2-473
ISOSUITACE i e 2-475
ISP o 2-478
ISPriME . L 2-479
iSprop (COM) ... e 2-480
isreal e 2-481
Isruntime e 2-483
ISSOrted e 2-484
ISSPACE . .t 2-486
S PANSE . o 2-487
ISSEr . e 2-488
ISSEIUCE . . . 2-489
isstudent 2-490
ISUNIX ottt e e e e 2-491
isvalid e 2-492
isvalid (timer) 2-493
ISVAIMAME . . e 2-494

2-7

2 Functions — Alphabetical List

B o 2-495
JAVAATTAY . oo e 2-496
javachk 2-497
javaMethod 2-499
javaObject 2-501
keyboard 2-503
KrON . 2-504
lasSterr . . 2-506
laSterror 2-508
lastwarn 2-510
o o 2-512
legend 2-513
legendre 2-517
length 2-520
length (serial) 2-521
liCENSE ... 2-522
lght .. 2-524
Light Properties i 2-528
lightangle 2-533
lighting 2-534
lN2mu ... 2-535
liNe .. 2-536
Line Properties i 2-543
LiNeSpec ... 2-551
lINSPace e e 2-557
listdlg 2-558
load 2-560
load (COM) ... e e 2-562
load (serial) 2-563
loadobj 2-565
I0g . . 2-567
10010 ... 2-568
102 . . 2-569
logical 2-570
10g10g . . 2-571
l0gM 2-573
l0gSPace 2-575

2-8

IOWEK . . e 2-577
IS 2-578
ISCOV . . e 2-579
ISQNONNEY oo 2-580
ISqr 2-583
IU . 2-587
IUINC .. 2-593
MAGIC . 2-600
mat2cell 2-603
Mat2str e 2-606
material 2-607
matlab 2-609
matlabre e 2-618
matlabroot 2-619
MAX ot e e e e e 2-620
MBAN . . . e e e e e 2-621
median 2-622
7= 0 0] Y 2-623
11T 2-624
mesh, meshc,meshz 2-625
meshgrid 2-629
methods 2-631
methodsview 2-633
115 2-635
MEXEXE .. e 2-637
mfilename 2-638
0211 2-639
0 01T 01 =T 2-640
mislocked 2-644
MKAir .. 2-645
MK e 2-647
mIocK ... e 2-650
MO . . e 2-651
MOEE .. e e e e e e 2-652
move (COM) 2-653
movefile 2-655

2-9

2 Functions — Alphabetical List

MNOVEGUI o ot e e et e e 2-658
NOVIE oottt e 2-660
MOVIE2AVI . . oot e 2-662
MOVIBIN . . e 2-664
MSODOX . .. 2-665
MU2IIN 2-667
multibandread 2-668
multibandwrite 2-672
munlock 2-676
namelengthmax 2-677
NaN .. e 2-678
nargchk 2-679
nargin, Nargout 2-680
nargoutchk e 2-682
Nchoosek e 2-683
Ndgrid 2-684
NAIMS .. 2-686
newplot 2-687
NEXTPOWZ . . 2-689
NNIS .. 2-690
NN Z e e e 2-692
noanimate e 2-693
NONZEIOS . . i ittt e et e e e e e e 2-694
11110 1 2-695
NOFMESE . .. 2-697
notebook 2-698
NMOW . o e e e 2-699
NUll .. e 2-700
num2cell ... 2-702
NUM 2SSt . .. 2-703
numel ... 2-704
NZIMNAX . ottt e e e e 2-706
ode45, ode23, odel13, odel5s, ode23s, ode23t, ode23tb 2-707
odefile e 2-717
o0 (=T o = 2-723
00ESEL . . . 2-724
OIS .ttt e e e 2-730

2-10

OPEN e e 2-731

opeNnfig ... 2-734
opengl . .. 2-736
OPENVAL . . o ot e e 2-737
OPtIMQet . ..o 2-738
OPLIMSEL . . oo 2-739
orderfields 2-744
OFIENt L 2-746
Orth o 2-748
otherwise 2-749

2-11

factor

Purpose Prime factors
Syntax f = factor(n)
Description f = factor(n) returns a row vector containing the prime factors of n.
Examples f = factor(123)
f =
3 41
See Also isprime, primes

2-12

factorial

Purpose Factorial function
Syntax factorial(n)
Description factorial(n) is the product of all the integers from 1 to n, i.e. prod(1:n).

Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitute,
and is accurate for the first 15 digits.

See Also prod

2-13

false

Purpose

Syntax

Description

Remarks

See Also

2-14

False array

false

false(n)
false(m,n)
false(m,n,p,-..)
false(size(A))

false is shorthand for logical (0).
false(n) is an n-by-n matrix of logical zeros.
false(m,n) or false([m,n]) is an m-by-n matrix of logical zeros.

false(m,n,p,...) or false([m n p ...]) is an m-by-n-by-p-by-. .. array of
logical zeros.

false(size(A)) is an array of logical zeros that is the same size as array A.
false(n) is much faster and more memory efficient than logical (zeros(n)).

true, logical

fclose

Purpose

Syntax

Description

See Also

Close one or more open files

fclose(fid)
fclose(Tall™)

status
status

status = fclose(fid) closes the specified file, if it is open, returning 0 if
successful and -1 if unsuccessful. Argument fid is a file identifier associated
with an open file. (See fopen for a complete description of fid).

status = fclose("all") closes all open files, (except standard input, output,
and error), returning 0 if successful and -1 if unsuccessful.

ferror, fopen, fprintf, fread, frewind, fscanf, fseek, ftell, fuwrite

2-15

fclose (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

2-16

Disconnect a serial port object from the device

fclose(obj)
obj A serial port object or an array of serial port objects.

fclose(obj) disconnects obj from the device.

If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need to
supply the pathname shown below.

help serial/fclose

This example creates the serial port object s, connects s to the device, writes
and reads text data, and then disconnects s from the device using fclose.

s = serial("COM1™);

fopen(s)

fprintf(s, "*IDN?")

idn = fscanf(s);

fclose(s)

At this point, the device is available to be connected to a serial port object. If
you no longer need s, you should remove from memory with the delete
function, and remove it from the workspace with the clear command.

Functions
clear, delete, fopen, stopasync

Properties
RecordStatus, Status

feather

Purpose

Syntax

Description

Examples

Plot velocity vectors

feather(U,V)
feather(2)
feather(...,LineSpec)

A feather plot displays vectors emanating from equally spaced points along a
horizontal axis. You express the vector components relative to the origin of the
respective vector.

feather (U, V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as
relative coordinates.

feather(2) displays the vectors specified by the complex numbers in z. This is
equivalent to feather(real (2), imag(2)).

feather(...,LineSpec) draws a feather plot using the line type, marker
symbol, and color specified by LineSpec.

Create a feather plot showing the direction of theta.

theta = (-90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

2-17

feather

15F

I

-15F

See Also compass, LineSpec, rose

“Direction and Velocity Plots” for related functions

2-18

18

20

feof

Purpose Test for end-of-file
Syntax eofstat = Feof(Fid)
Description eofstat = feof(fid) returns 1 if the end-of-file indicator for the file, fid, has

been set, and 0 otherwise. (See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

2-19

ferror

Purpose

Syntax

Description

See Also

2-20

Query MATLAB about errors in file input or output

message = ferror(fid)
message = ferror(fid, "clear”)
[message,errnum] = ferror(...)

message = ferror(fid) returns the error string, message. Argument fid is a
file identifier associated with an open file (See fopen for a complete description
of Fid).

message = ferror(fid, "clear™) clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file 1/0 operation associated with the specified file.

If the most recent 1/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file 1/0
operation. The value of message is a string that may contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

feval

Purpose

Syntax

Description

Remarks

Examples

Function evaluation

[vl,y2,...] feval (fhandle,x1,...,xn)
[vl,y2,...] = feval(function,x1,...,xn)

[vl,y2,...] = feval(fhandle,x1, ...,xn) evaluates the function handle,
fhandle, using arguments x1 through xn. If the function handle is bound to
more than one built-in or M-file, (that is, it represents a set of overloaded
functions), then the data type of the arguments x1 through xn, determines
which function is dispatched to.

[yl,y2...] = feval(function,x1,...,xn) If function is a quoted string
containing the name of a function (usually defined by an M-file), then

feval (function,x1, . ..,xn) evaluates that function at the given arguments.
The function parameter must be a simple function name; it cannot contain
path information.

Note The preferred means of evaluating a function by reference is to use a
function handle. To support backward compatibility, feval also accepts a
function name string as a first argument. However, function handles offer the
additional performance, reliability, and source file control benefits listed in the
section “Benefits of Using Function Handles”.

The following two statements are equivalent.

[V.D0] = eig(A)
[V.D] feval (@eig,A)

The following example passes a function handle, fhandle, in a call to fminbnd.
The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = Ffminbnd(fhandle, 0.3, 1);

The fminbnd function uses feval to evaluate the function handle that was
passed in.

function [xf,fval,exitflag,output] = ...

2-21

feval

See Also

2-22

fminbnd(funfcn,ax,bx,options,varargin)

fx = feval (funfcn,x,varargin{:});

In the next example, @deblank returns a function handle to variable, fhandle.
Examining the handle using functions(fhandle) reveals that it is bound to
two M-files that implement the deblank function. The default, strfun\
deblank.m, handles most argument types. However, the function is overloaded
by a second M-file (in the @cell subdirectory) to handle cell array arguments
as well.

fhandle = @deblank;

ff = functions(fhandle);
ff.default
ans =
matlabroot\toolbox\matlab\strfun\deblank.m
ff.methods
ans =
cell: "matlabroot\toolbox\matlab\strfun\@cell\deblank.m"

When the function handle is evaluated on a cell array, feval determines from
the argument type that the appropriate function to dispatch to is the one that
resides in strfun\@cell.

feval (fhandle, {"string ","with =,"blanks)
ans =
"string” "with*® "blanks*

assignin, function_handle, functions, builtin, eval, evalin

fft

Purpose

Syntax

Definition

Description

Discrete Fourier transform

FFE(X)
= FFL(X,n)
FFe(x, [1.dim)
FFE(X,n,dim)

< < < <
I

The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length N by:

N .
X() = Y x(je{ DD
i=1

N -
x(j) = (1/N) z X(k)(,o_l\gj'l)(k‘l)
k=1
where

_ o(=2mi)/N
wy =€

is an N th root of unity.

Y = FFt(X) returns the discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fFft(X,n) returns the n-point DFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[1.dim) and Y = fft(X,n,dim) applies the FFT operation across
the dimension dim.

2-23

fft

Examples

2-24

A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t

0:0.001:0.6;

sin(2*pi*50*t)+sin(2*pi*120*t);

y = X + 2*randn(size(t));

plot(1000*t(1:50),y(1:50))

title("Signal Corrupted with Zero-Mean Random Noise®)
xlabel ("time (milliseconds)*®)

X
1

Signal Corrupted with Zero-Mean Random Noise

. .
0 10 20 30 40 50
time (milliseconds)

It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of
the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);
The power spectrum, a measurement of the power at various frequencies, is

Pyy = Y.* conj(Y) / 512;

fft

Algorithm

Graph the first 257 points (the other 255 points are redundant) on a
meaningful frequency axis:

f = 1000*(0:256)/512;
plot(f,Pyy(1:257))
title("Frequency content of y*)
xlabel (" frequency (Hz)*)

Frequency content of y
80 T T T

60 —

50 q

mww

0 I 1 1 . 1
0 50 100 150 200 250 300 350 400 450 500
frequency (Hz)

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

The FFT functions (Fft, Fft2, fftn, ifft, i Fft2, ifftn) are based on a library
called FFTW [3],[4]. To compute an N -point DFT when N is composite (that
is, when N = N;N,), the FFTW library decomposes the problem using the
Cooley-Tukey algorithm [1], which first computes N, transforms of size N, ,
and then computes N, transforms of size N, . The decomposition is applied
recursively to both the N; - and N, -point DFTs until the problem can be
solved using one of several machine-generated fixed-size “codelets.” The
codelets in turn use several algorithms in combination, including a variation of
Cooley-Tukey [5], a prime factor algorithm [6], and a split-radix algorithm [2].
The particular factorization of N is chosen heuristically.

2-25

fft

See Also

References

2-26

When N is a prime number, the FFTW library first decomposes an N -point
problem into three (N —1)-point problems using Rader’s algorithm [7]. It then
uses the Cooley-Tukey decomposition described above to compute the

(N =1)-point DFTs.

For most N, real-input DFTs require roughly half the computation time of
complex-input DFTs. However, when N has large prime factors, there is little
or no speed difference.

The execution time for Fft depends on the length of the transform. It is fastest
for powers of two. It is almost as fast for lengths that have only small prime
factors. It is typically several times slower for lengths that are prime or which
have large prime factors.

ffe2, fftn, fftshift, ifft
dftmtx, filter, and freqz in the Signal Processing Toolbox
[1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Computation

of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, April
1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review
and a State of the Art,” Signal Processing, Vol. 19, April 1990, pp. 259-299.

[3] FFTW (http://www.FFtw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for
the FFT,” Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 611.

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of Data
Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968, pp. 1107-1108.

fft2

Purpose

Syntax

Description

Algorithm

See Also

Two-dimensional discrete Fourier transform

Y = Ffe2(X)
Y = fft2(X,m,n)

Y = FFt2(X) returns the two-dimensional discrete Fourier transform (DFT) of
X, computed with a fast Fourier transform (FFT) algorithm. The result Y is the
same size as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

FFt2(X) can be simply computed as

FFE(FFE(X) . 7). "
This computes the one-dimensional DFT of each column X, then of each row of
the result. The execution time for fft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have only

small prime factors. It is typically several times slower for lengths that are
prime or which have large prime factors.

fft, fftn, Frtshift, iffe2

2-27

fftn

Purpose

Syntax

Description

Algorithm

See Also

2-28

Multidimensional discrete Fourier transform

Y
Y

fen(X)
ffen(X,siz)

Y = FFtn(X) returns the discrete Fourier transform (DFT) of X, computed
with a multidimensional fast Fourier transform (FFT) algorithm. The result Y
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

fFtn(X) is equivalent to

Y = X;

for p = 1l:length(size(X))
Y = ffe(Y,[1.p):

end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The execution time for fft depends on the length of the
transform. It is fastest for powers of two. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

fft, ffe2, ffen, ifftn

fftshift

Purpose

Syntax

Description

Examples

See Also

Shift zero-frequency component of discrete Fourier transform to center of
spectrum

Y = fftshift(X)
Y = fftshift(X,dim)
Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the

zero-frequency component to the center of the array. It is useful for visualizing
a Fourier transform with the zero-frequency component in the middle of the
spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps quadrants one and three of X with quadrants two and four.
For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the dimension
dim.
For any matrix X

Y = Fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal is in
the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

circshift, fft, fft2, fftn, ifftshift

2-29

fgetl

Purpose
Syntax

Description

Examples

See Also

2-30

Read line from file, discard newline character

fgetl (fid)

tline

tline = fgetl (fid) returns the next line of the file associated with the file
identifier fid. If fgetl encounters the end-of-file indicator, it returns —1. (See
fopen for a complete description of fid.) fgetl is intended for use with text
files only.

The returned string tline does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

The example reads every line of the M-file fgetl .m.

fid=fopen(~fgetl_.m");

while 1
tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end

fclose(fid);

fgets

fgetl (serial)

Purpose

Syntax

Arguments

Description

Remarks

Read one line of text from the device and discard the terminator

tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

obj A serial port object.

tline Text read from the instrument, excluding the terminator.
count The number of values read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

tline = fgetl(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The valuesReceived property value is increased by the number of values read
— including the terminator — each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to supply
the pathname shown below.

help serial/fgetl

Rules for Completing a Read Operation with fgetl

A read operation with fgetl blocks access to the MATLAB command line until:

2-31

fgetl (serial)

Example

See Also

2-32

= The terminator specified by the Terminator property is reached.
= The time specified by the Timeout property passes.
= The input buffer is filled.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial("COM1");
fopen(s)
fprintf(s, "RS232?%)

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
17

Use fgetl to read the data returned from the previous write operation, and
discard the terminator.

settings = fgetl(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =

16

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgets, fopen

fgets

Purpose

Syntax

Description

See Also

Read line from file, keep newline character

r+
;.
D
1l

fgets(fid)
fgets(fid,nchar)

r~+
5.

[¢]

1

tline = fgets(fid) returns the next line of the file associated with file
identifier fid. If fgets encounters the end-of-file indicator, it returns —1. (See
fopen for a complete description of fid.) fgets is intended for use with text
files only.

The returned string tline includes the line terminators associated with the
text line. To obtain the string without the line terminators, use fgetl.

tline = fgets(fid,nchar) returns at most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

fgetl

2-33

fgets (serial)

Purpose

Syntax

Arguments

Description

Remarks

2-34

Read one line of text from the device and include the terminator

tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

obj A serial port object.

tline Text read from the instrument, including the terminator.
count The number of bytes read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

tline = fgets(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data includes the terminator with
the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The valuesReceived property value is increased by the number of values read
— including the terminator — each time fgets is issued.

If you use the help command to display help for fgets, then you need to supply
the pathname shown below.

help serial/fgets

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

fgets (serial)

Example

See Also

= The terminator specified by the Terminator property is reached.
= The time specified by the Timeout property passes.
= The input buffer is filled.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial("COM1");
fopen(s)
fprintf(s, "RS232?%)

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
17

Use fgets to read the data returned from the previous write operation, and
include the terminator.

settings = fgets(s)

settings =

9600;0;0;NONE;LF

length(settings)

ans =

17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgetl, fopen

Properties
BytesAvailable, BytesAvai lableFcn, InputBufferSize, Status, Terminator,
Timeout, ValuesReceived

2-35

fieldnames

Purpose

Syntax

Description

Examples

2-36

Return field names of a structure, or property names of an object

names = Fieldnames(s)
names = Fieldnames(obj)
names = Ffieldnames(obj,"-full®)

names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing the
names of the public data fields associated with obj, which is either a MATLAB,
COM, or Java object.

names = fieldnames(obj,"-full") returns a cell array of strings containing
the name, type, attributes, and inheritance of each field associated with obj,
which is either a MATLAB, COM, or Java object.

Given the structure

mystr(1,1).name = "alice”;
mystr(1,1).1D = O;
mystr(2,1).name =
mystr(2,1).I1D = 1

"gertrude”;

the command n = fieldnames(mystr) yields

n =
"name”
“ID"

In another example, if is an object of Java class java.awt.Frame, the
command fieldnames(fF) lists the properties of f.

f = java.awt.Frame;

Ffieldnames(f)
ans =
"WIDTH"
"HEIGHT"
"PROPERTIES"
"SOMEBITS*

fieldnames

"FRAMEBITS"
"ALLBITS"

See Also isfield, orderfields, rmfield, dynamic field names

Properties
BytesAvailable, InputBufferSize, ReadAsyncMode, Status, Terminator,

Timeout, ValuesReceived

2-37

figflag

Purpose

Syntax

Description

Examples

See Also

2-38

Test if figure is on screen

[flag] = Figflag("figurename®)
[flag,fig]l = figflag("figurename®)
[--.1 = figflag("figurename®,silent)

Use figflag to determine if a particular figure exists, bring a figure to the
foreground, or set the window focus to a figure.

[flag] = figflag("figurename") returns a 1 if the figure named
"figurename” exists and sends the figure to the foreground; otherwise this
function returns 0.

[flag,fig] = figflag("figurename®) returns a 1 in flag, returns the
figure's handle in fig, and sends the figure to the foreground, if the figure
named "figurename" exists. Otherwise this function returns 0.

[-..]1 = figflag("figurename~,silent) pops the figure window to the
foreground if silent is 0, and leaves the figure in its current position if silent
is 1.

To determine if a figure window named "Fluid Jet Simulation” exists, type

[flag,fig]l = figflag("Fluid Jet Simulation®)

MATLAB returns:

flag =
1

fig =
1

If two figures with handles 1 and 3 have the name "Fluid Jet Simulation-,
MATLAB returns:

flag =

figflag

“Figure Windows” for related functions

2-39

figure

Purpose

Syntax

Description

Remarks

2-40

Create a figure graphics object

figure

figure("PropertyName® ,PropertyValue,...)
figure(h)

h = figure(...)

figure creates figure graphics objects. figure objects are the individual
windows on the screen in which MATLAB displays graphical output.

figure creates a new figure object using default property values.

figure("PropertyName" ,PropertyValue, ...) creates a new figure object
using the values of the properties specified. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a figure with
handle h exists. If h is the handle to an existing figure, figure(h) makes the
figure identified by h the current figure, makes it visible, and raises it above all
other figures on the screen. The current figure is the target for graphics output.
If h is not the handle to an existing figure, but is an integer, figure(h) creates
a figure, and assigns it the handle h. figure(h) where h is not the handle to a
figure, and is not an integer, is an error.

h = figure(...) returns the handle to the figure object.

To create a figure object, MATLAB creates a new window whose characteristics
are controlled by default figure properties (both factory installed and user
defined) and properties specified as arguments. See the properties section for
a description of these properties.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Use set to modify the properties of an existing figure or get to query the
current values of figure properties.

The gcf command returns the handle to the current figure and is useful as an
argument to the set and get commands.

figure

Example

See Also

Object
Hierarchy

To create a figure window that is one quarter the size of your screen and is
positioned in the upper-left corner, use the root object’s ScreenSize property to
determine the size. ScreenSize is a four-element vector: [left, bottom, width,
height]:

scrsz = get(0, "ScreenSize");
figure("Position®,[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

axes, uicontrol, uimenu, close, clf, gcf, rootobject
“Object Creation Functions” for related functions

Figure Properties for additional information on figure properties

Root

Figure

| Uicontrol

| Light | | Line | Patch Rectangle Surface | Text |

| Uicontextmenu

Axes | Uimenu

| Image

Setting Default Properties
You can set default figure properties only on the root level.

set(0, "Defaul tFigureProperty” ,PropertyValue...)

Where Property is the name of the figure property and PropertyValue is the
value you are specifying. Use set and get to access figure properties.

2-41

figure

Property List The following table lists all figure properties and provides a brief description of
each. The property name links bring you an expanded description of the
properties.

Property Name Property Description Property Value

Positioning the Figure

Position Location and size of figure Value: a 4-element vector
[left, bottom, width, height]
Default: depends on display

Units Units used to interpret the Position Values: inches, centimeters,
property normalized, points, pixels,
characters

Default: pixels
Specifying Style and Appearance

Color Color of the figure background Values: ColorSpec
Default: depends on color
scheme (see colordef)

MenuBar Toggle the figure menu bar on and Values: none, figure
off Default: figure
Name Figure window title Values: string

Default: ** (empty string)

NumberTitle Display “Figure No. n”, where n is Values: on, off
the figure number Default: on

Resize Specify whether the figure window Values: on, off
can be resized using the mouse Default: on

SelectionHighlight Highlight figure when selected Values: on, off
(Selected property set to on) Default: on

Visible Make the figure visible or invisible Values: on, off
Default: on

2-42

figure

Property Name

Property Description

Property Value

WindowStyle

Controlling the Colormap

Colormap

Dithermap

DithermapMode

FixedColors

MinColormap

ShareColors

Specifying Transparency

Alphamap

Specifying the Renderer

BackingStore

DoubleBuffer

Select normal or modal window

The figure colormap

Colormap used for truecolor data on
pseudocolor displays

Enable MATLAB-generated
dithermap

Colors not obtained from colormap
Minimum number of system color

table entries to use

Allow MATLAB to share system
color table slots

The figure alphamap

Enable off screen pixel buffering

Flash-free rendering for simple
animations

Values: normal, modal
Default: normal

Values: m-by-3 matrix of
RGB values
Default: the jet colormap

Values: m-by-3 matrix of
RGB values

Default: colormap with full
range of colors

Values: auto, manual
Default: manual

Values: m-by-3 matrix of
RGB values (read only)

Values: scalar
Default: 64

Values on, off
Default: on

m-by-1 matrix of alpha
values

Values: on, off
Default: on

Values: on, off
Default: off

2-43

figure

Property Name

Property Description

Property Value

Renderer

Rendering method used for screen
and printing

General Information About the Figure

Children

FileName

Parent

Selected

Tag

Type

UserData

RendererMode

Handle of any uicontrol, uimenu, and
uicontextmenu objects displayed in
the figure

Used by guide

The root object is the parent of all
figures

Indicate whether figure isin a
“selected” state.

User-specified label
The type of graphics object (read
only)

User-specified data

Automatic or user-selected renderer

Information About Current State

CurrentAxes

CurrentCharacter

CurrentObject

Handle of the current axes in this
figure

The last key pressed in this figure

Handle of the current object in this
figure

Values: painters, zbuffer,
OpenGL

Default: automatic selection
by MATLAB

Values: vector of handles

String

Value: always 0

Values: on, off
Default: on

Value: any string
Default: =" (empty string)

Value: the string "figure”

Values: any matrix
Default: [1 (empty matrix)

Values: auto, manual
Default: auto

Values: axes handle

Values: single character

Values: graphics object
handle

2-44

figure

Property Name

Property Description

Property Value

CurrentPoint

SelectionType

Callback Routine Execution

BusyAction

ButtonDownFcn

CloseRequestFcn

CreateFcn

DeleteFcn

Interruptible

KeyPressFcn

ResizeFcn

Location of the last button click in
this figure

Mouse selection type

Specify how to handle callback
routine interruption

Define a callback routine that
executes when a mouse button is
pressed on an unoccupied spot in the
figure

Define a callback routine that
executes when you call the close
command

Define a callback routine that
executes when a figure is created

Define a callback routine that
executes when the figure is deleted
(via close or delete)

Determine if callback routine can be
interrupted

Define a callback routine that
executes when a key is pressed in the
figure window

Define a callback routine that
executes when the figure is resized

Values: 2-element vector
[x-coord, y-coord]

Values: normal, extended,
alt, open

Values: cancel, queue
Default: queue

Values: string or function
handle
Default: empty string

Values: string or function
handle
Default: closereq

Values: string or function
handle
Default: empty string

Values: string or function
handle
Default: empty string

Values: on, off
Default: on (can be
interrupted)

Values: string or function
handle
Default: empty string

Values: string or function
handle
Default: empty string

2-45

figure

Property Name

Property Description

Property Value

UlContextMenu

WindowButtonDownFcn

WindowButtonMotionFcn

WindowButtonUpFcn

Associate a context menu with the
figure

Define a callback routine that
executes when you press the mouse
button down in the figure

Define a callback routine that
executes when you move the pointer
in the figure

Define a callback routine that
executes when you release the mouse
button

Controlling Access to Objects

IntegerHandle

HandleVisibility

HitTest

NextPlot

Defining the Pointer

Pointer

Specify integer or noninteger figure
handle

Determine if figure handle is visible
to users or not

Determine if the figure can become
the current object (see the figure
CurrentObject property)

Determine how to display additional
graphics to this figure

Select the pointer symbol

Values: handle of a
Uicontrextmenu

Values: string or function
handle
Default: empty string

Values: string or function
handle
Default: empty string

Values: string or function
handle
Default: empty string

Values: on, off
Default: on (integer handle)

Values: on, cal Iback, off
Default: on

Values: on, off
Default: on

Values: add, replace,
replacechildren
Default: add

Values: crosshair, arrow,
watch, topl, topr, botl, botr,
circle, cross, fleur, left,
right, top, bottom,
fullcrosshair, ibeam,
custom

Default: arrow

2-46

figure

Property Name

Property Description

Property Value

PointerShapeCData

PointerShapeHotSpot

Data that defines the pointer

Specify the pointer active spot

Properties That Affect Printing

InvertHardcopy

PaperOrientation

PaperPosition

PaperPositionMode

PaperSize

PaperType

PaperUnits

Change figure colors for printing

Horizontal or vertical paper
orientation

Control positioning figure on printed
page

Enable WYSIWYG printing of figure

Size of the current PaperType
specified in PaperUnits

Select from standard paper sizes

Units used to specify the PaperSize
and PaperPosition

Controlling the XWindows Display (UNIX only)

Values: 16-by-16 matrix
Default: set Pointer to
custom and see

Values: 2-element vector
[row, column]
Default: [1,1]

Values: on, off
Default: on

Values: portrait, landscape
Default: portrait

Values: 4-element vector
[left, bottom, width, height]

Values: auto, manual
Default: manual

Values: [width, height]

Values: see property
description
Default: usletter

Values: normalized, inches,
centimeters, points
Default: inches

2-47

figure

Property Name

Property Description

Property Value

XDisplay

XVisual

XVisualMode

Specify display for MATLAB (UNIX
only)

Select visual used by MATLAB
(UNIX only)

Auto or manual selection of visual
(UNIX only)

Values: display identifier
Default: :0.0

Values: visual ID

Values: auto, manual
Default: auto

2-48

Figure Properties

Modifying
Properties

Figure
Property
Descriptions

You can set and query graphics object properties in two ways:

= The Property Editor is an interactive tool that enables you to see and change
object property values.

= The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

Alphamap m-by-1 matrix of alpha values

Figure alphamap. This property is an m-by-1 array of non-NaN alpha values.
MATLAB accesses alpha values by their row number. For example, an index of
1 specifies the first alpha value, an index of 2 specifies the second alpha value,
and so on. Alphamaps can be any length. The default alphamap contains 64
values that progress linearly from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch objects, but do not
affect other graphics objects.

BackingStore {on} | off

Off screen pixel buffer. When BackingStore is on, MATLAB stores a copy of the
figure window in an off-screen pixel buffer. When obscured parts of the figure
window are exposed, MATLAB copies the window contents from this buffer
rather than regenerating the objects on the screen. This increases the speed
with which the screen is redrawn.

While refreshing the screen quickly is generally desirable, the buffers required
do consume system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory used by
the buffers. If your computer does not support backingstore, setting the
BackingStore property results in a warning message, but has no other effect.

Setting BackingStore to off can increase the speed of animations because it
eliminates the need to draw into both an off-screen buffer and the figure
window.

2-49

Figure Properties

2-50

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel — discard the event that attempted to execute a second callback
routine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.
ButtonDownFcn string or function handle

Button press callback function. A callback routine that executes whenever you
press a mouse button while the pointer is in the figure window, but not over a
child object (i.e., uicontrol, axes, or axes child). Define this routine as a string
that is a valid MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

Children of the figure. A vector containing the handles of all axes, uicontrol,
uicontextmenu, and uimenu objects displayed within the figure. You can
change the order of the handles and thereby change the stacking of the objects
on the display.

Clipping {on} | off
This property has no effect on figures.
CloseRequestFcn string or function handle

Function executed on figure close. This property defines a function that
MATLAB executes whenever you issue the close command (either a

Figure Properties

close(figure_handle) or a close all), when you close a figure window from
the computer’s window manager menu, or when you quit MATLAB.

The CloseRequestFcn provides a mechanism to intervene in the closing of a
figure. It allows you to, for example, display a dialog box to ask a user to
confirm or cancel the close operation or to prevent users from closing a figure
that contains a GUI.

The basic mechanism is:

= A user issues the close command from the command line, by closing the
window from the computer’s window manager menu, or by quiting MATLAB.

= The close operation executes the function defined by the figure
CloseRequestFcn. The default function is named closereq and is predefined
as:

shh = get(0, "ShowHiddenHandles");
set(0, "ShowHiddenHandles","on");
currFig = get(0, "CurrentFigure®);
set(0, "ShowHiddenHandles" ,shh);
delete(currFig);

These statements unconditionally delete the current figure, destroying the
window. closereq takes advantage of the fact that the close command makes
all figures specified as arguments the current figure before calling the
respective close request function.

You can set CloseRequestFcn to any string that is a valid MATLAB statement,
including the name of an M-file. For example,

set(gcf, "CloseRequestFcn®, "disp(""This window is immortal®"")")

This close request function never closes the figure window; it simply echoes
“This window is immortal” on the command line. Unless the close request
function calls delete, MATLAB never closes the figure. (Note that you can
always call delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A more useful application of the close request function is to display a question
dialog box asking the user to confirm the close operation. The following M-file
illustrates how to do this.

% my_closereq

2-51

Figure Properties

2-52

% User-defined close request function
% to display a question dialog box

selection = questdlg("Close Specified Figure?”, ...
"Close Request Function”®, ...
"Yes","No","Yes");
switch selection,
case "Yes",
delete(gct)
case "No*
return
end

Now assign this M-file to the CloseRequestFcn of a figure:

set(figure_handle, "CloseRequestFcn™,"my_closereq®)

To make this M-file your default close request function, set a default value on
the root level.

set(0, "Defaul tFigureCloseRequestFcn®, "my_closereq”)

MATLAB then uses this setting for the CloseRequestFcn of all subsequently
created figures.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Color ColorSpec

Background color. This property controls the figure window background color.
You can specify a color using a three-element vector of RGB values or one of the
MATLAB predefined names. See ColorSpec for more information.

Colormap m-by-3 matrix of RGB values

Figure colormap. This property is an m-by-3 array of red, green, and blue
(RGB) intensity values that define m individual colors. MATLAB accesses
colors by their row number. For example, an index of 1 specifies the first RGB
triplet, an index of 2 specifies the second RGB triplet, and so on. Colormaps can
be any length (up to 256 only on MS-Windows), but must be three columns
wide. The default figure colormap contains 64 predefined colors.

Figure Properties

Colormaps affect the rendering of surface, image, and patch objects, but
generally do not affect other graphics objects. See colormap and ColorSpec for
more information.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a figure object. You must
define this property as a default value for figures. For example, the statement,

set(0, "DefaultFigureCreateFcn”, ...
"set(gchbo, " " IntegerHandle™ ", ""off"")")

defines a default value on the root level that causes the created figure to use
noninteger handles whenever you (or MATLAB) create a figure. MATLAB
executes this routine after setting all properties for the figure. Setting this
property on an existing figure object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root Cal IbackObject property, which you can query using gcbo.

CurrentAxes handle of current axes

Target axes in this figure. MATLAB sets this property to the handle of the
figure’s current axes (i.e., the handle returned by the gca command when this
figure is the current figure). In all figures for which axes children exist, there
is always a current axes. The current axes does not have to be the topmost axes,
and setting an axes to be the CurrentAxes does not restack it above all other
axes.

You can make an axes current using the axes and set commands. For example,
axes(axes_handle) and set(gcf, "CurrentAxes” ,axes_handle) both make
the axes identified by the handle axes_handle the current axes. In addition,
axes(axes_handle) restacks the axes above all other axes in the figure.

If a figure contains no axes, get(gcf, "CurrentAxes™) returns the empty
matrix. Note that the gca function actually creates an axes if one does not exist.

CurrentCharacter single character

Last key pressed. MATLAB sets this property to the last key pressed in the
figure window. CurrentCharacter is useful for obtaining user input.

2-53

Figure Properties

2-54

CurrentMenu (Obsolete)

This property produces a warning message when queried. It has been
superseded by the root Cal IbackObject property.

CurrentObject object handle

Handle of current object. MATLAB sets this property to the handle of the object
that is under the current point (see the CurrentPoint property). This object is
the front-most object in the view. You can use this property to determine which
object a user has selected. The function gco provides a convenient way to
retrieve the CurrentObject of the CurrentFigure.

CurrentPoint two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this property to the
location of the pointer at the time of the most recent mouse button press.
MATLAB updates this property whenever you press the mouse button while
the pointer is in the figure window.

In addition, MATLAB updates CurrentPoint before executing callback
routines defined for the figure WindowButtonMotionFcn and
WindowButtonUpFcn properties. This enables you to query CurrentPoint from
these callback routines. It behaves like this:

= If there is no callback routine defined for the WindowButtonMotionFcn or the
WindowButtonUpFcn, then MATLAB updates the CurrentPoint only when
the mouse button is pressed down within the figure window.

= If there is a callback routine defined for the WindowButtonMotionFcn, then
MATLAB updates the CurrentPoint just before executing the callback. Note
that the WindowButtonMotionFcn executes only within the figure window
unless the mouse button is pressed down within the window and then held
down while the pointer is moved around the screen. In this case, the routine
executes (and the CurrentPoint is updated) anywhere on the screen until
the mouse button is released.

= |f there is a callback routine defined for the WindowButtonUpFcn, MATLAB
updates the CurrentPoint just before executing the callback. Note that the
WindowButtonUpFcn executes only while the pointer is within the figure
window unless the mouse button is pressed down initially within the
window. In this case, releasing the button anywhere on the screen triggers
callback execution, which is preceded by an update of the CurrentPoint.

Figure Properties

The figure CurrentPoint is updated only when certain events occur, as
previously described. In some situations, (such as when the
WindowButtonMotionFcn takes a long time to execute and the pointer is moved
very rapidly) the CurrentPoint may not reflect the actual location of the
pointer, but rather the location at the time when the WindowButtonMotionFcn
began execution.

The CurrentPoint is measured from the lower-left corner of the figure window,
in units determined by the Units property.

The root PointerLocation property contains the location of the pointer
updated synchronously with pointer movement. However, the location is
measured with respect to the screen, not a figure window.

See uicontrol for information on how this property is set when you click on a
uicontrol object.

DeleteFcn string or function handle

Delete figure callback routine. A callback routine that executes when the figure
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so these values
are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root Cal IbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Dithermap m-by-3 matrix of RGB values

Colormap used for true-color data on pseudocolor displays. This property
defines a colormap that MATLAB uses to dither true-color CData for display on
pseudocolor (8-bit or less) displays. MATLAB maps each RGB color defined as
true-color CData to the closest color in the dithermap. The default Dithermap
contains colors that span the full spectrum so any color values map reasonably
well.

However, if the true-color data contains a wide range of shades in one color, you
may achieve better results by defining your own dithermap. See the
DithermapMode property.

2-55

Figure Properties

2-56

DithermapMode auto | {manual}

MATLAB generated dithermap. In manual mode, MATLAB uses the colormap
defined in the Dithermap property to display direct color on pseudocolor
displays. When DithermapMode is auto, MATLAB generates a dithermap based
on the colors currently displayed. This is useful if the default dithermap does
not produce satisfactory results.

The process of generating the dithermap can be quite time consuming and is
repeated whenever MATLAB re-renders the display (e.g., when you add a new
object or resize the window). You can avoid unnecessary regeneration by
setting this property back to manual and save the generated dithermap (which
MATLAB loaded into the Dithermap property).

DoubleBuffer on | {off}

Flash-free rendering for simple animations. Double buffering is the process of
drawing to an off-screen pixel buffer and then blitting the buffer contents to the
screen once the drawing is complete. Double buffering generally produces
flash-free rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use double buffering
with the animated objects’ EraseMode property set to normal. Use the set
command to enable double buffering.

set(figure_handle, "DoubleBuffer®,"on")

Double buffering works only when the figure Renderer property is set to
painters.

FileName String

GUI FIG-file name. GUIDE stores the name of the FIG-file used to save the
GUI layout in this property.

FixedColors m-by-3 matrix of RGB values (read only)

Non-colormap colors. Fixed colors define all colors appearing in a figure
window that are not obtained from the figure colormap. These colors include
axis lines and labels, the color of line, text, uicontrol, and uimenu objects, and
any colors that you explicitly define, for example, with a statement like:

set(gcf, "Color=,[0.3,0.7,0.9]).

Fixed color definitions reside in the system color table and do not appear in the
figure colormap. For this reason, fixed colors can limit the number of

Figure Properties

simultaneously displayed colors if the number of fixed colors plus the number
of entries in the figure colormap exceed your system’s maximum number of
colors.

(See the root ScreenDepth property for information on determining the total
number of colors supported on your system. See the MinColorMap and
ShareColors properties for information on how MATLAB shares colors
between applications.)

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to cal Iback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using cal Iback or off, the object’s
handle does not appear in its parent’s Chi ldren property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root's
CallbackObject property or in the figure's CurrentObject property, and axes
do not appear in their parent’'s CurrentAxes property.

2-57

Figure Properties

2-58

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibi l ity settings (this does not affect the
values of the HandleVisibi lity properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the figure can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the figure. If HitTest is off, clicking
on the figure sets the CurrentObject to the empty matrix.

IntegerHandle {on} | off (GUIDE default off)

Figure handle mode. Figure object handles are integers by default. When
creating a new figure, MATLAB uses the lowest integer that is not used by an
existing figure. If you delete a figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable real-number
handles (e.g., 67.0001221) instead of integers. This feature is designed for
dialog boxes where removing the handle from integer values reduces the
likelihood of inadvertently drawing into the dialog box.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a figure callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn,
KeyPressFcn, WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn are affected by the Interruptible property. MATLAB
checks for events that can interrupt a callback routine only when it encounters
a drawnow, figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

InvertHardcopy {on} | off

Change hardcopy to black objects on white background. This property affects
only printed output. Printing a figure having a background color (Color
property) that is not white results in poor contrast between graphics objects
and the figure background and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by changing the
color of the figure and axes to white and the axis lines, tick marks, axis labels,

Figure Properties

etc., to black. lines, text, and the edges of patches and surfaces may be changed
depending on the print command options specified.

If you set InvertHardCopy to off, the printed output matches the colors
displayed on the screen.

See print for more information on printing MATLAB figures.

KeyPressFcn string or function handle

Key press callback function. A callback routine invoked by a key press occurring
in the figure window. You can define KeyPressFcn as any legal MATLAB
expression or the name of an M-file.

The callback routine can query the figure’'s CurrentCharacter property to
determine what particular key was pressed and thereby limit the callback
execution to specific keys.

The callback routine can also query the root PointerWindow property to
determine in which figure the key was pressed. Note that pressing a key while
the pointer is in a particular figure window does not make that figure the
current figure (i.e., the one referred by the gcf command).

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

MenuBar none | {figure} (GUIDE default is none)

Enable-disable figure menu bar. This property enables you to display or hide
the menu bar placed at the top of a figure window. The default (Figure) is to
display the menu bar.

This property affects only built in menus. Menus defined with the uimenu
command are not affected by this property.

MinColormap scalar (default = 64)

Minimum number of color table entries used. This property specifies the
minimum number of system color table entries used by MATLAB to store the
colormap defined for the figure (see the ColorMap property). In certain
situations, you may need to increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications in addition
to MATLAB and have defined a large figure colormap (e.g., 150 to 200 colors).
MATLAB may select colors that are close but not exact from the existing colors

2-59

Figure Properties

2-60

in the system color table because there are not enough slots available to define
all the colors you specified.

To ensure MATLAB uses exactly the colors you define in the figure colormap,
set MinColorMap equal to the length of the colormap.

set(gcf, "MinColormap”, length(get(gcf, "ColorMap™)))

Note that the larger the value of MinColorMap, the greater the likelihood other
windows (including other MATLAB figure windows) will display in false colors.

Name string

Figure window title. This property specifies the title displayed in the figure
window. By default, Name is empty and the figure title is displayed as

Figure No. 1, Figure No. 2, and so on. When you set this parameter to a
string, the figure title becomes Figure No. 1: <string>. See the NumberTitle
property.

NextPlot {add} | replace | replacechildren

How to add next plot. NextPlot determines which figure MATLAB uses to
display graphics output. If the value of the current figure is:

=< add — use the current figure to display graphics (the default).

= replace — reset all figure properties, except Position, to their defaults and
delete all figure children before displaying graphics (equivalent to clIf
reset).

= replacechildren — remove all child objects, but do not reset figure
properties (equivalent to clIf).

The newplot function provides an easy way to handle the NextPlot property.
Also see the NextPlot axes property and Controlling creating_plotsGraphics
Output for more information.

NumberTitle {on} | off (GUIDE default off)

Figure window title number. This property determines whether the string
Figure No. N (where N is the figure number) is prefixed to the figure window
title. See the Name property.

PaperOrientation {portrait} | landscape

Horizontal or vertical paper orientation. This property determines how printed
figures are oriented on the page. portrait orients the longest page dimension

Figure Properties

vertically; landscape orients the longest page dimension horizontally. See the
orient command for more detail.

PaperPosition four-element rect vector
Location on printed page. A rectangle that determines the location of the figure
on the printed page. Specify this rectangle with a vector of the form

rect = [left, bottom, width, height]

where left specifies the distance from the left side of the paper to the left side
of the rectangle and bottom specifies the distance from the bottom of the page
to the bottom of the rectangle. Together these distances define the lower-left
corner of the rectangle. width and height define the dimensions of the
rectangle. The PaperuUnits property specifies the units used to define this
rectangle.

PaperPositionMode auto | {manual}

WYSIWYG printing of figure. In manual mode, MATLAB honors the value
specified by the PaperPosition property. In auto mode, MATLAB prints the
figure the same size as it appears on the computer screen, centered on the page.

PaperSize [width height]

Paper size. This property contains the size of the current PaperType, measured
in PaperUnits. See PaperType to select standard paper sizes.

PaperType Select a value from the following table

Selection of standard paper size. This property sets the PaperSize to the one of
the following standard sizes.

Property Value Size (Width x Height)
usletter (default) 8.5-by-11 inches
uslegal 11-by-14 inches
tabloid 11-by-17 inches

AO 841-by-1189mm

Al 594-by-841mm

A2 420-by-594mm

2-61

Figure Properties

Property Value Size (Width x Height)
A3 297-by-420mm
A4 210-by-297mm
A5 148-by-210mm
BO 1029-by-1456mm
Bl 728-by-1028mm
B2 514-by-728mm
B3 364-by-514mm
B4 257-by-364mm
B5 182-by-257mm
arch-A 9-by-12 inches
arch-B 12-by-18 inches
arch-C 18-by-24 inches
arch-D 24-by-36 inches
arch-E 36-by-48 inches
A 8.5-by-11 inches
B 11-by-17 inches
C 17-by-22 inches
D 22-by-34 inches
E 34-by-43 inches

Note that you may need to change the PaperPosition property in order to
position the printed figure on the new paper size. One solution is to use
normalized PaperUnits, which enables MATLAB to automatically size the
figure to occupy the same relative amount of the printed page, regardless of the
paper size.

2-62

Figure Properties

PaperUnits normalized | {inches} | centimeters |

points
Hardcopy measurement units. This property specifies the units used to define
the PaperPosition and PaperSize properties. All units are measured from the
lower-left corner of the page. normal ized units map the lower-left corner of the
page to (0, 0) and the upper-right corner to (1.0, 1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch).

If you change the value of PaperuUnits, it is good practice to return it to its
default value after completing your computation so as not to affect other
functions that assume PaperUnits is set to the default value.

Parent handle

Handle of figure's parent. The parent of a figure object is the root object. The
handle to the root is always 0.
Pointer crosshair I {arrow} | watch topl |
topr | botl | botr | circle Cross |
fleur | left | right | top | bottom
fullcrosshair | ibeam | custom
Pointer symbol selection. This property determines the symbol used to indicate
the pointer (cursor) position in the figure window. Setting Pointer to custom
allows you to define your own pointer symbol. See the PointerShapeCData
property and Specifying the Figure Pointer for more information.

PointerShapeCData 16-by-16 matrix

User-defined pointer. This property defines the pointer that is used when you
set the Pointer property to custom. Itis a 16-by-16 element matrix defining the
16-by-16 pixel pointer using the following values:

< 1 — color pixel black
= 2 —color pixel white
= NaN — make pixel transparent (underlying screen shows through)

Element (1,1) of the PointerShapeCData matrix corresponds to the upper-left
corner of the pointer. Setting the Pointer property to one of the predefined
pointer symbols does not change the value of the PointerShapeCData.
Computer systems supporting 32-by-32 pixel pointers fill only one quarter of
the available pixmap.

2-63

Figure Properties

2-64

PointerShapeHotSpot2-element vector

Pointer active area. A two-element vector specifying the row and column
indices in the PointerShapeCData matrix defining the pixel indicating the
pointer location. The location is contained in the CurrentPoint property and
the root object’s PointerLocation property. The default value is element (1,1),
which is the upper-left corner.

Position four-element vector

Figure position. This property specifies the size and location on the screen of
the figure window. Specify the position rectangle with a four-element vector of
the form:

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower-left corner of the
screen to the lower-left corner of the figure window. width and height define
the dimensions of the window. See the Units property for information on the
units used in this specification. The Ieft and bottom elements can be negative
on systems that have more than one monitor.

You can use the get function to obtain this property and determine the position
of the figure and you can use the set function to resize and move the figure to
a new location.

Renderer painters | zbuffer | OpenGL

Rendering method used for screen and printing. This property enables you to
select the method used to render MATLAB graphics. The choices are:

= painters — The original rendering method used by MATLAB is faster when
the figure contains only simple or small graphics objects.

=« zbuffer — MATLAB draws graphics object faster and more accurately
because objects are colored on a per pixel basis and MATLAB renders only
those pixels that are visible in the scene (thus eliminating front-to-back
sorting errors). Note that this method can consume a lot of system memory
if MATLAB is displaying a complex scene.

= OpenGL — OpenGL is a renderer that is available on many computer systems.
This renderer is generally faster than painters or zbuffer and in some cases
enables MATLAB to access graphics hardware that is available on some
systems.

Figure Properties

Using the
OpenGL
Renderer

Hardware vs. Software OpenGL Implementations
There are two kinds of OpenGL implementations — hardware and software.

The hardware implementation makes use of special graphics hardware to
increase performance and is therefore significantly faster than the software
version. Many computers have this special hardware available as an option or
may come with this hardware right out of the box.

Software implementations of OpenGL are much like the ZBuffer renderer that
is available on MATLAB version 5.0, however, OpenGL generally provides
superior performance to ZBuffer.

OpenGL Availability

OpenGL is available on all computers that MATLAB runs on. MATLAB
automatically finds hardware versions of OpenGl if they are available. If the
hardware version is not available, then MATLAB uses the software version.

The software versions that are available on different platforms are:

= On UNIX systems, MATLAB uses the software version of OpenGL that is
included in the MATLAB distribution.

= On MS-Windows, OpenGL is available as part of the operating system. If you
experience problems with OpenGL, contact your graphics driver vender to
obtain the latest qualified version of OpenGL.

MATLAB issues a warning if it cannot find a usable OpenGL library.

Determining What Version You Are Using

To determine the version and vendor of the OpenGL library that MATLAB is

using on your system, type the following command at the MATLAB prompt
opengl info

This command also returns a string of extensions to the OpenGL specification
that are available with the particular library MATLAB is using. This
information is helpful to The MathWorks, so please include this information if
you need to report bugs.

OpenGL vs. Other MATLAB Renderers

There are some difference between drawings created with OpenGL and those
created with the other renderers. The OpenGL specific differences include:

2-65

Figure Properties

2-66

= OpenGL does not do colormap interpolation. If you create a surface or patch
using indexed color and interpolated face or edge coloring, OpenGL will
interpolate the colors through the RGB color cube instead of through the
colormap.

= OpenGL does not support the phong value for the FaceLighting and
EdgeLighting properties of surfaces and patches.

= OpenGL does not support logarithmic-scale axes.

If You Are Having Problems
Consult the OpenGL Technical Note if you are having problems using OpenGL.

RendererMode {auto} | manual

Automatic, or user selection of Renderer. This property enables you to specify
whether MATLAB should choose the Renderer based on the contents of the
figure window, or whether the Renderer should remain unchanged.

When the RendererMode property is set to auto, MATLAB selects the rendering
method for printing as well as for screen display based on the size and
complexity of the graphics objects in the figure.

For printing, MATLAB switches to zbuffer at a greater scene complexity than
for screen rendering because printing from a Z-buffered figure can be
considerably slower than one using the painters rendering method, and can
result in large PostScript files. However, the output does always match what
is on the screen. The same holds true for OpenGL.: the output is the same as
that produced by the ZBuffer renderer — a bitmap with a resolution determined
by the print command’s -r option.

Criteria for Autoselection of OpenGL Renderer

When the RendererMode property is set to auto, MATLAB uses the following

criteria to determine whether to select the OpenGL renderer:

If the opengl autoselection mode is autoselect, MATLAB selects OpenGL if:

= The host computer has OpenGL installed and is in True Color mode
(OpenGL does not fully support 8-bit color mode).

= The figure contains no logarithmic axes (logarithmic axes are not supported
in OpenGL).

= MATLAB would select zbuffer based on figure contents.

Figure Properties

= Patch objects faces have no more than three vertices (some OpenGL
implementations of patch tesselation are unstable).

= The figure contains less than 10 uicontrols (OpenGL clipping around
uicontrols is slow).

= No line objects use markers (drawing markers is slow).

= Phong lighting is not specified (OpenGL does not support Phong lighting; if
you specify Phong lighting, MATLAB uses the ZBuffer renderer).

Or

= Figure objects use transparency (OpenGL is the only MATLAB renderer that
supports transparency).

When the RendererMode property is set to manual, MATLAB does not change
the Renderer, regardless of changes to the figure contents.

Resize {on} | off

Window resize mode. This property determines if you can resize the figure
window with the mouse. on means you can resize the window, off means you
cannot. When Resize is off, the figure window does not display any resizing
controls (such as boxes at the corners) to indicate that it cannot be resized.

ResizeFcn string or function handle

Window resize callback routine. MATLAB executes the specified callback
routine whenever you resize the figure window. You can query the figure's
Position property to determine the new size and position of the figure window.
During execution of the callback routine, the handle to the figure being resized
is accessible only through the root Cal IbackObject property, which you can
query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not directly supported
by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object at a constant
height in pixels and attached to the top of the figure, but always matches the
width of the figure. The following ResizeFcn accomplishes this; it keeps the
uicontrol whose Tag is "StatusBar™ 20 pixels high, as wide as the figure, and
attached to the top of the figure. Note the use of the Tag property to retrieve the
uicontrol handle, and the gcbo function to retrieve the figure handle. Also note
the defensive programming regarding figure Units, which the callback

2-67

Figure Properties

2-68

requires to be in pixels in order to work correctly, but which the callback also
restores to their previous value afterwards.

u = findobj("Tag", "StatusBar");

fig = gcbo;

old_units = get(fig, "Units");

set(fig, "Units", "pixels”);

figpos = get(fig, "Position®);

upos = [0, Ffigpos(4) - 20, figpos(3), 20];
set(u, "Position” ,upos);

set(fig, "Units",old_units);

You can change the figure Position from within the ResizeFcn callback;
however the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be called if the
PaperPositionMode property is set to manual and you have defined a resize
function. If you do not want your resize function called by print, set the
PaperPositionMode to auto.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See Resize Behavior for information on creating resize functions using GUIDE.

Selected on | off

Is object selected. This property indicates whether the figure is selected. You
can, for example, define the ButtonDownFcn to set this property, allowing users
to select the object with the mouse.

SelectionHighlight {on} | off
figures do not indicate selection.
SelectionType {normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide information
about the last mouse button press that occurred within the figure window. This
information indicates the type of selection made. Selection types are actions
that are generally associated with particular responses from the user interface
software (e.g., single clicking on a graphics object places it in move or resize
mode; double-clicking on a filename opens it, etc.).

Figure Properties

The physical action required to make these selections varies on different
platforms. However, all selection types exist on all platforms.

Selection Type MS-Windows X-Windows
Normal Click left mouse button Click left mouse button
Extend Shift - click left mouse Shift - click left mouse
button or click both left button or click
and right mouse buttons middle mouse button
Alternate Control - click left mouse Control - click left mouse
button or click right button or click
mouse button right mouse button
Open Double click any mouse Double click any mouse
button button

Note that the ListBox style of uicontrols set the figure SelectionType property
to normal to indicate a single mouse click or to open to indicate a double mouse
click. See uicontrol for information on how this property is set when you click
on a uicontrol object.

ShareColors {on} | off

Share slots in system colortable with like colors. This property affects the way
MATLAB stores the figure colormap in the system color table. By default,
MATLAB looks at colors already defined and uses those slots to assign pixel
colors. This leads to an efficient use of color resources (which are limited on
systems capable of displaying 256 or less colors) and extends the number of
figure windows that can simultaneously display correct colors.

However, in situations where you want to change the figure colormap quickly
without causing MATLAB to re-render the displayed graphics objects, you
should disable color sharing (set ShareColors to off). In this case, MATLAB
can swap one colormap for another without changing pixel color assignments
because all the slots in the system color table used for the first colormap are
replaced with the corresponding color in the second colormap. (Note that this
applies only in cases where both colormaps are the same length and where the
computer hardware allows user modification of the system color table.)

2-69

Figure Properties

2-70

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular figure, regardless of user actions that may have changed the
current figure. To do this, identify the figure with a Tag.

figure("Tag", "Plotting Figure®)
Then make that figure the current figure before drawing by searching for the
Tag with findobj.

figure(findobj("Tag", "Plotting Figure®))

Type string (read only)

Obiject class. This property identifies the kind of graphics object. For figure
objects, Type is always the string "figure".

UlContextMenu handle of a uicontextmenu object

Associate a context menu with the figure. Assign this property the handle of a
uicontextmenu object created in the figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu whenever you
right-click over the figure.
Units {pixels} | normalized inches |
centimeters | points characters

(Guide default characters)
Units of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower-left
corner of the window.

= normal ized units map the lower-left corner of the figure window to (0,0) and
the upper-right corner to (1.0,1.0).

= inches, centimeters, and points are absolute units (one point equals 1/72
of an inch).

= The size of a pixel depends on screen resolution.

Figure Properties

= Characters units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

This property affects the CurrentPoint and Position properties. If you change
the value of Units, it is good practice to return it to its default value after
completing your computation so as not to affect other functions that assume
Units is set to the default value.

When specifying the units as property/value pairs during object creation, you
must set the Units property before specifying the properties that you want to
use these units.

UserData matrix

User specified data. You can specify UserData as any matrix you want to
associate with the figure object. The object does not use this data, but you can
access it using the set and get commands.

Visible {on} | off

Obiject visibility. The Visible property determines whether an object is
displayed on the screen. If the Visible property of a figure is off, the entire
figure window is invisible.

WindowButtonDownFcnstring or functional handle

Button press callback function. Use this property to define a callback routine
that MATLAB executes whenever you press a mouse button while the pointer
is in the figure window. Define this routine as a string that is a valid MATLAB
expression or the name of an M-file. The expression executes in the MATLAB
workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowButtonMotionFcnstring or functional handle

Mouse motion callback function. Use this property to define a callback routine
that MATLAB executes whenever you move the pointer within the figure
window. Define this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

2-71

Figure Properties

2-72

WindowButtonUpFcn string or function handle

Button release callback function. Use this property to define a callback routine
that MATLAB executes whenever you release a mouse button. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

The button up event is associated with the figure window in which the
preceding button down event occurred. Therefore, the pointer need not be in
the figure window when you release the button to generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other functions
that contain drawnow commands and the Interruptible property is set to off,
the WindowButtonUpFcn may not be called. You can prevent this problem by
setting Interruptible to on.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowStyle {normal} | modal

Normal or modal window behavior. When WindowStyle is set to modal, the
figure window traps all keyboard and mouse events over all MATLAB windows
as long as they are visible. Windows belonging to applications other than
MATLAB are unaffected. Modal figures remain stacked above all normal
figures and the MATLAB command window. When multiple modal windows
exist, the most recently created window keeps focus and stays above all other
windows until it becomes invisible, or is returned to WindowStyle normal, or is
deleted. At that time, focus reverts to the window that last had focus.

Figures with windowStyle modal and Visible off do not behave modally until
they are made visible, so it is acceptable to hide a modal window instead of
destroying it when you want to reuse it.

You can change the WindowStyle of a figure at any time, including when the
figure is visible and contains children. However, on some systems this may
cause the figure to flash or disappear and reappear, depending on the
windowing-system’s implementation of normal and modal windows. For best
visual results, you should set WindowStyle at creation time or when the figure
is invisible.

Figure Properties

Modal figures do not display uimenu children or built-in menus, but it is not an
error to create uimenus in a modal figure or to change WindowStyle to modal
on a figure with uimenu children. The uimenu objects exist and their handles
are retained by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Use modal figures to create dialog boxes that force the user to respond without
being able to interact with other windows. Typing Control C at the MATLAB
prompt causes all figures with WindowStyle modal to revert to WindowStyle
normal, allowing you to type at the command line.

XDisplay display identifier (UNIX only)

Specify display for MATLAB. You can display figure windows on different
displays using the XDisplay property. For example, to display the current
figure on a system called fred, use the command:

set(gcf, "XDisplay®, "fred:0.0%)

XVisual visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by MATLAB by
setting the Xvisual property to the desired visual ID. This can be useful if you
want to test your application on an 8-bit or grayscale visual. To see what
visuals are avail on your system, use the UNIX xdpyinfo command. From
MATLAB, type

Ixdpyinfo

The information returned will contain a line specifying the visual ID. For
example,

visual id: 0x21

To use this visual with the current figure, set the Xvisual property to the ID.
set(gcf, "XVisual ", "0x21%)

XVisualMode auto | manual

Auto or manual selection of visual. VisualMode can take on two values — auto
(the default) and manual. In auto mode, MATLAB selects the best visual to use
based on the number of colors, availability of the OpenGL extension, etc. In
manual mode, MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

2-73

file formats

Purpose Readable file formats
Description This table shows the file formats that MATLAB is capable of reading.
File Extension File Content Read Returns
Format Comman
d
Text MAT Saved MATLAB load Variables in
workspace the file
csv Comma-separated csvread Double array
numbers
DLM Delimited text dImread Double array
TAB Tab-separated text dlImread Double array
Scientific CDF Data in Common cdfread Cell array of
Data Data Format CDF records
FITS Flexible Image fitsread Primary or
Transport System extension
data table data
HDF Datain hdfread HDF or
Hierarchical Data HDF-EOS
Format data set
Spread- XLS Excel worksheet xIsread Double or cell
sheet array
WK1 Lotus 123 wklread Double or cell
worksheet array

2-74

file formats

File Extension File Content Read Returns
Format Comman
d
Image TIFF TIFF image imread Truecolor,
grayscale or
indexed
image(s)
PNG PNG image imread Truecolor,
grayscale or
indexed image
HDF HDF image imread Truecolor,
grayscale or
indexed
image(s)
BMP BMP image imread Truecolor or
indexed image
JPEG JPEG image imread Truecolor or
grayscale
image
GIF GIF image imread Indexed
image
PCX PCX image imread Indexed
image
XWD XWD image imread Indexed
image
CUR Cursor image imread Indexed
image
ICO Icon image imread Indexed
image

2-75

file formats

See Also

2-76

File Extension File Content Read Returns
Format Comman
d
Audio AU NeXT/Sun sound auread Sound data
file and sample
rate
WAV Microsoft Wave wavread Sound data
sound and sample
rate
Movie AVI Movie aviread MATLAB
movie

fscanf, fread, textread, importdata

fileattrib

Purpose

Syntax

Description

Set or get attributes of file or directory

fileattrib

fileattrib(" name®)

fileattrib("name”, "attrib®)

fileattrib("name”, "attrib”, "users”®)

fileattrib("name*, "attrib”, "users”,"s")

[status,message,messageid] =
fileattrib("name*", "attrib”, “users®,"s")

The fileattrib function is like the DOS attrib command or the UNIX chmod
command.

fileattrib displays the attributes for the current directory. Values are

Value Description

0 Attribute is off

1 Attribute is set (on)

NaN Attribute does not apply

fileattrib("name") displays the attributes for name, where name is the
absolute or relative pathname for a directory or file. Use the wildcard * at the
end of name to view attributes for all matching files.

fileattrib("name", "attrib") sets the attribute for name, where name is the
absolute or relative pathname for a directory or file. Specify the + qualifier
before the attribute to set it, and specify the - qualifier before the attribute to
clear it. Use the wildcard * at the end of name to set attributes for all matching
files. Values for attrib are

Value for attrib Description

a Archive (Windows only)

h Hidden file (Windows only)

2-77

fileattrib

2-78

Value for attrib Description

S System file (Windows only)
w Write access (Windows and UNIX)
X Executable (UNIX only)

For example, Fileattrib("myfile.m", "+w") makes myfile.m a writable file.

fileattrib(“name", "attrib", "users") sets the attribute for name, where
name is the absolute or relative pathname for a directory or file, and defines
which users are affected by attrib, where users is applicable only for UNIX
systems. For more information about these attributes, see UNIX reference
information for chmod. The default value for users is u. Values for users are

Value for users Description

a All users

g Group of users
o All other users
u Current user

fileattrib("name", "attrib”, "users”, "s") sets the attribute for name,
where name is the absolute or relative pathname for a file or a directory and its
contents, and defines which users are affected by attrib. Here the s specifies
that attrib be applied to all contents of name, where name is a directory. The s
argument is not supported on Windows 98 and ME.

[status,message,messageid] =
fileattrib("name","attrib","users”,"s") sets the attribute for name,

returning the status, a message, and the MATLAB error message ID (see error
and lasterr). Here, status is 1 for success and is 0 for no error. If attrib,
users, and s are not specified, and status is 1, message is a structure
containing the file attributes and messageid is blank. If status is 0, messageid
contains the error. If you use a wildcard * at the end of name, mess will be a
structure.

fileattrib

Examples

Get Attributes of File
To view the attributes of myfile.m, type

Ffileattrib("myfile.m")
MATLAB returns

Name: *d:/work/myfile.m*®
archive:
system:
hidden:
directory:
UserRead:
UserWrite:
UserExecute:
GroupRead: NaN
GroupWrite: NaN
GroupExecute: NaN
OtherRead: NaN
OtherWrite: NaN
OtherExecute: NaN

R ORFrP, OOOOo

UserWrite is 0, meaning myfile.m is read only. The Group and Other values
are NaN because they do not apply to the current operating system, Windows.

Set File Attribute
To make myfile.m become writable, type
fileattrib("myfile.m","+w")
Running fileattrib("myfile.m") now shows UserWrite to be 1.
Set Attributes for Specified Users
To make the directory d:/work/results be a read-only directory for all users,
type
fileattrib("d:/work/results”,"-w","a")

The - preceding the write attribute, w, specifies that write status is removed.

2-79

fileattrib

2-80

Set Multiple Attributes for Directory and Its Contents

To make the directory d:/work/results and all its contents be read only and
be hidden, on Windows, type

fileattrib("d:/work/results®, “"+h-w","","s")
Because users is not applicable on Windows systems, its value is empty. Here,
s applies the attribute to the contents of the specified directory.

Return Status and Structure of Attributes
To return the attributes for the directory results to a structure, type

[stat,mess]=Fileattrib("results”®)
MATLAB returns

stat

mess
Name: "d:\work\results”
archive:
system:
hidden:
directory:
UserRead:
UserWrite:
UserExecute:
GroupRead: NaN
GroupWrite: NaN
GroupExecute: NaN
OtherRead: NaN
OtherWrite: NaN
OtherExecute: NaN

PR RRLROOO

fileattrib

The operation was successful as indicated by the status, stat, being 1. The
structure mess contains the file attributes. Access the attribute values in the
structure. For example, typing

mess.Name
returns the path for results
ans =

d:\work\results

Return Attributes with Wildcard for name

Return the attributes for all files in the current directory whose names begin
with new.

[stat,mess]=Fileattrib("new*")

MATLAB returns

stat

mess =

1x3 struct array with fields:
Name
archive
system
hidden
directory
UserRead
UserWrite
UserExecute
GroupRead
GroupWrite
GroupExecute
OtherRead
OtherWrite
OtherExecute

The results indicate there are three matching files. To view the filenames, type

mess.Name

2-81

fileattrib

MATLAB returns

ans =
d:\work\results\newname.m

ans =
d:\work\results\newone.m

ans =
d:\work\results\newtest.m

To view just the first filename, type

mess(1) -Name

ans =
d:\work\results\newname.m

See Also copyfile, cd, dir, filebrowser, Is, mkdir, movefile, rmdir

2-82

filebrowser

Purpose

Graphical
Interface

Syntax
Description

Use the pathname edit box to
directories and their contents.

Double-click a file to
openitinan
appropriate tool.

View the help portion of
the selected M-file.

See Also

||D:\m}frrrF'i1es ;I J| =5 |
A1l files |Fite Type |Last Modified |pescriptio
esults Folder 23-Jun-2000 4: =
M-file 27-Now-1097 6:28 Can
aution.md] Model 13-Nonw-1937 2:43
collatz.m M-file 21-Jun-2000 1:21 PM Collatz pro
Ecoﬂa‘tzaﬂ.m M-file 15-Jun-2000 4:51 PM Plot lengtl_
Eco'l'latzp'lot.m M-file 15-Jun-2000 4:42 PM Plot Tengtl
L] diary 20-Dec-1999 3:19 PM
[Eta11ing.m M-file 10-Dec-1999 4:24 PM
E'F'i nish.m M-file 06-Mar-2000 3:04 PM FINISHDLG
|edh knots . mat MaT-file 19-Apr-2000 4:48 PM -
d o
—1 B = BUCKY 15 the a0-by-60 sparse adjacency matrix of the —
connectiwvity agraph of the geodesic dome, the soccer hall,
and the carbon-60 molecule. -
;li\: w1 Lol Fal FLVE R R w4 e e e R W I’

Display Current Directory browser, a tool for viewing files in current directory

As an alternative to the filebrowser function, select Current Directory from
the View menu in the MATLAB desktop.

Ffilebrowser

filebrowser displays the Current Directory browser.

view Click the find button to
search for content
within M-files.

<} Current Directory

le Edit Mew ‘Web Window Help

cd, copyfile, fileattrib, Is, mkdir, movefile, pwd, rmdir

2-83

fileparts

Purpose Return filename parts
Syntax [pathstr,name,ext,versn] = fileparts(~filename®)
Description [pathstr,name,ext,versn] = fileparts("filename™) returns the path,

filename, extension, and version for the specified file. The returned ext field
contains a dot (.) before the file extension.

The fileparts function is platform dependent.
You can reconstruct the file from the parts using

fullfile(pathstr,[name ext versn])

Examples This example returns the parts of file to path, name, ext, and ver.

file = "\home\user4\matlab\classpath.txt";
[pathstr,name,ext,versn] = fileparts(file)

pathstr =
\home\user4\matlab

name =
classpath

ext =
. txt

versn =

See Also fullfile

2-84

filesep

Purpose
Syntax

Description

Examples

See Also

Return the directory separator for this platform

T = Filesep

T = filesep returns the platform-specific file separator character. The file
separator is the character that separates individual directory names in a path
string.

On the PC
iofun_dir = ["toolbox™ filesep "matlab™ Ffilesep "iofun”]
iofun_dir =
toolbox\matlab\iofun

On a UNIX system

iodir = ["toolbox" Ffilesep "matlab® Ffilesep "iofun"]

iodir
toolbox/matlab/iofun

fullfile, fileparts

2-85

fill

Purpose

Syntax

Description

Remarks

2-86

Filled two-dimensional polygons

fill(X,Y,0)

Ffill(X,Y,ColorSpec)
fill(X1,Y1,C1,%X2,Y2,C2,...)

fill(..., "PropertyName” ,PropertyValue)
h = Ffill(...)

The Fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color
specified by C. C is a vector or matrix used as an index into the colormap. If C is
a row vector, Iength(C) must equal size(X,2) and size(Y,2);if Cisacolumn
vector, Iength(C) must equal size(X,1) and size(Y,1). If necessary, fill
closes the polygon by connecting the last vertex to the first.

Fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X and Y with
the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled
areas.

fill(...,"PropertyName",PropertyVvalue) allows you to specify property
names and values for a patch graphics object.

h = Fill(...) returns a vector of handles to patch graphics objects, one
handle per patch object.

If X or Y is a matrix, and the other is a column vector with the same number of
elements as rows in the matrix, fill replicates the column vector argument to
produce a matrix of the required size. fill forms a vertex from corresponding
elements in X and Y and creates one polygon from the data in each column.

The type of color shading depends on how you specify color in the argument list.
If you specify color using ColorSpec, fill generates flat-shaded polygons by
setting the patch object’s FaceColor property to the corresponding RGB triple.

If you specify color using C, fi 1 I scales the elements of C by the values specified
by the axes property CLim. After scaling C, C indexes the current colormap.

fill

If C is a row vector, fill generates flat-shaded polygons where each element
determines the color of the polygon defined by the respective column of the X
and Y matrices. Each patch object’'s FaceColor property is set to "flat". Each
row element becomes the CData property value for the nth patch object, where
n is the corresponding column in X or Y.

If Cisacolumn vector or a matrix, Fill uses a linear interpolation of the vertex
colors to generate polygons with interpolated colors. It sets the patch graphics
object FaceColor property to "interp~ and the elements in one column become
the CData property value for the respective patch object. If C is a column vector,
fill replicates the column vector to produce the required sized matrix.

Examples Create a red octagon.
t = (1/16:1/8:1)"*2*pi ;
X = sin(t);
y = cos(1);

fill(x,y,"r")
axis square

1

0.8

0.6

0.4r

0.2

-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

See Also axis, caxis, colormap, ColorSpec, fill3, patch

2-87

fill

“Polygons and Surfaces” for related functions

2-88

fill3

Purpose

Syntax

Description

Algorithm

Filled three-dimensional polygons

fill3(X,Y,Z,0)

Fill3(X,Y,Z,ColorSpec)
filla(x1,vy1,21,C1,X2,Y2,22,C2,...)
fill3(..., "PropertyName” ,PropertyVvValue)
h = Ffill3(...)

The Fill13 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,0C) fills three-dimensional polygons. X, Y, and Z triplets specify
the polygon vertices. If X, Y, or Z is a matrix, fi 113 creates n polygons, where n
is the number of columns in the matrix. fi 113 closes the polygons by
connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C) must equal size(X,2) and size(Y,2);
if C is a column vector, length(C) must equal size(X,1) and size(Y,1).

Ffill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by X, Y, and
Z with color specified by ColorSpec.

fill3(X1,Y1,21,C1,X2,Y2,22,C2,...) specifies multiple filled
three-dimensional areas.

fill3(..., PropertyName" ,PropertyValue) allows you to set values for
specific patch properties.

h = Fill3(...) returns a vector of handles to patch graphics objects, one
handle per patch.

If X, Y, and Z are matrices of the same size, fill3 forms a vertex from the
corresponding elements of X, Y, and z (all from the same matrix location), and
creates one polygon from the data in each column.

IfX, Y, or Zisamatrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fil 13 generates flat-shaded polygons and
sets the patch object FaceColor property to an RGB triple.

2-89

fill3

Examples

2-90

If you specify color using C, fi 113 scales the elements of C by the axes property
CLim, which specifies the color axis scaling parameters, before indexing the
current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the
FaceColor property of the patch objects to "flat". Each element becomes the
CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with interpolated
colors and sets the patch object FaceColor property to "interp®. fill3 uses a
linear interpolation of the vertex colormap indices when generating polygons
with interpolated colors. The elements in one column become the CData
property value for the respective patch object. If C is a column vector, fill3
replicates the column vector to produce the required sized matrix.

Create four triangles with interpolated colors.

X=[0112;1122;0011];

Y=[1111;1010;0000];

Z=1111;1010;0000];

C = [0.5000 1.0000 1.0000 0.5000;
1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

Fill3(X,Y,Z.C)

fill3

See Also axis, caxis, colormap, ColorSpec, fill, patch

“Polygons and Surfaces” for related functions

2-91

filter

Purpose

Syntax

Description

Example

2-92

Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

y = Ffilter(b,a,X)

Ly,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)

y = filter(b,a,X,zi,dim)
[--.-1 = filter(b,a,X,[1,dim)

The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form 1l transposed
implementation of the standard difference equation (see “Algorithm”).

y = Filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, fi l'ter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, Tilter operates on the first nonsingleton dimension.

Ly.zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
If X is a row or column vector, output zf is a column vector of
max(length(a), length(b))-1. If X is a matrix, zf is an array of such vectors,
one for each column of X, and similarly for multidimensional arrays.

Ly.zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns the
final conditions, zf, of the filter delays. Input zi is a vector of length
max(length(a), length(b))-1, or an array with the leading dimension of size
max(length(a), length(b))-1 and with remaining dimensions matching
those of X.

y = filter(b,a,X,zi,dim)and [...] = filter(b,a,X,[].,dim) operate
across the dimension dim.

You can use filter to find a running average without using a for loop. This
example finds the running average of a 16-element vector, using a window size
of 5.

data = [1:0.2:4]";

filter

Algorithm

windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)

ans
-2000
-4400
.7200
-0400
-4000
-6000
-8000
-0000
-2000
-4000
-6000
-8000
-0000
-2000
-4000
-6000

WWWWNNNMNNNRPPRPPEPRPOOOI

The Filter function is implemented as a direct form Il transposed structure,

x(m)

or

y(n) = b()*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(@)*y(n-1) - ... - a(natl)*y(n-na)

where n-1 is the filter order, and which handles both FIR and IIR filters [1].

2-93

filter

The operation of filter at sample m is given by the time domain difference
equations

y(m) = b(1)x(m) +z;(m-1)
z;(m) = b(2)x(m) +z,(m-1)-a(2)y(m)

zr.]_z(m) = .b(n —1)x(n.”|) +z,_(m-1)-a(n-1)y(m)

z,_1(m) = b(n)x(m)-a(n)y(m)

The input-output description of this filtering operation in the z -transform
domain is a rational transfer function,

_ b(1)+b(2)zt+ ... +b(nb +1)z"b
1+a(2)zl+..+a(na+1)z"na

Y (2) X(2)

See Also filter2

filtfilt, filtic in the Signal Processing Toolbox

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

2-94

filter2

Purpose

Syntax

Description

Remarks

Algorithm

See Also

Two-dimensional digital filtering

Y = filter2(h,X)
Y = Filter2(h,X,shape)
Y = filter2(h,X) filtersthe datain X with the two-dimensional FIR filter in

the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

“full" Returns the full two-dimensional correlation. In this case, Y is
larger than X.

“same” (default) Returns the central part of the correlation. In this
case, Y is the same size as X.

"valid” Returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Two-dimensional correlation is equivalent to two-dimensional convolution
with the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Given a matrix X and a two-dimensional FIR filter h, fi I ter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this
as the result. If the shape parameter specifies an alternate part of the
convolution for the result, filter2 returns the appropriate part.

conv2, Filter

2-95

find

Purpose

Syntax

Description

Examples

2-96

Find indices and values of nonzero elements

k = Find(x)
[i.31 = Ffind(X)
[i.j,v] = Find(0)

k = Ffind(X) returns the indices of the array X that point to nonzero elements.
If none is found, find returns an empty matrix.

[i,.J]1 = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This is often used with sparse matrices.

[i.J.v] = find(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

In general, find(X) regards X as X(:), which is the long column vector formed
by concatenating the columns of X.

[i.jJ.v] = find(X~=0) produces a vector v with all 1s, and returns the row and
column indices.

Some operations on a vector

x=[11 0 33 0 55]°;

find(x)
ans =

1

3

5
find(x == 0)
ans =

2

4

find(0 < X & x < 10*pi)

find

ans =

1

And on a matrix

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

[i.j.v] = Ffind(M > 6)

i = j = Vv =
1 1 1
3 2 1
2 3 1
See Also nonzeros, sparse, colon, logical operators, relational operators

2-97

findall

Purpose

Syntax

Description

Remarks

Examples

See Also

2-98

Find handles of all graphics objects

findall(handle_list)
findall(handle_list, "property”, "value™,...)

object_handles
object_handles

object_handles = findall(handle_list) returns the handles of all objects
in the hierarchy under the objects identified in handle_list.

object_handles = findall(handle_list, "property”,“value®,...)
returns the handles of all objects in the hierarchy under the objects identified
in handle_list that have the specified properties set to the specified values.

findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

plot(1:10)

xlabel xlab

a = findall(gcf)

b = findobj(gcf)

c = findall(b, "Type","text") % return the xlabel handle twice
d = findobj(b, "Type", "text") % can"t find the xlabel handle

allchild, findobj

findfigs

Purpose
Syntax

Description

See Also

Find visible off-screen figures
findfigs

findfigs finds all visible figure windows whose display area is off the screen
and positions them on the screen.

A window appears to MATLAB to be off-screen when its display area (the area
not covered by the window’s title bar, menu bar, and toolbar) does not appear
on the screen.

This function is useful when bringing an application from a larger monitor to
a smaller one (or one with lower resolution). Windows visible on the larger
monitor may appear off-screen on a smaller monitor. Using findfigs ensures
that all windows appear on the screen.

figflag
“Finding and Identifying Graphics Objects” for related functions

2-99

findobj

Purpose

Syntax

Description

Remarks

Examples

2-100

Locate graphics objects with specific properties

findobj

findobj ("PropertyName® ,PropertyValue,...)
findobj(objhandles, ...)

findobj(objhandles, "flat", "PropertyName” ,PropertyValue, ...)

> 5 IS5 O
1

findobj locates graphics objects and returns their handles. You can limit the
search to objects with particular property values and along specific branches of
the hierarchy.

h

findobj returns the handles of the root object and all its descendants.

h = findobj ("PropertyName” ,PropertyValue, . ..) returns the handles of
all graphics objects having the property PropertyName, set to the value
PropertyValue. You can specify more than one property/value pair, in which
case, Findobj returns only those objects having all specified values.

h = findobj(objhandles, . ..) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles, "flat", "PropertyName® ,PropertyValue,...)

restricts the search to those objects listed in objhandles and does not search

descendants.

findobj returns an error if a handle refers to a non-existent graphics object.

Findobj correctly matches any legal property value. For example,
findobj("Color®,"r")

finds all objects having a Color property set to red, r, or [1 0 O].

When a graphics object is a descendant of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its
handle. Therefore, implicit references to a graphics object can result in its
handle being returned multiple times.

Find all line objects in the current axes:

h = findobj(gca, "Type~","line")

findobj

See Also copyobj, gcf, gca, gcbo, geo, get, set
Graphics objects include:
axes, figure, image, light, line, patch, surface, text, uicontrol, uimenu

“Finding and Identifying Graphics Objects” for related functions

2-101

findstr

Purpose
Syntax

Description

Examples

See Also

2-102

Find a string within another, longer string

k = findstr(strl,str2)

k = findstr(stri,str2) searches the longer of the two input strings for any
occurrences of the shorter string, returning the starting index of each such
occurrence in the double array, k. If no occurrencs are found, then findstr
returns the empty array, [1.

The search performed by findstr is case sensitive. Any leading and trailing
blanks in either input string are explicitly included in the comparison.

Unlike the strfind function, the order of the input arguments to findstr is not
important. This can be useful if you are not certain which of the two input
strings is the longer one.

s = "Find the starting indices of the shorter string.";

findstr(s, "the")
ans =
6 30

findstr(“the*,s)
ans =
6 30

strfind, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi, regexp,
regexpi, regexprep

finish

Purpose MATLAB termination M-file

Description When MATLAB quits, it runs a script called Finish.m, if it exists and is on the
MATLAB search path. This is a file that you create yourself in order to have
MATLAB perform any final tasks just prior to terminating. For example, you
might want to save the data in your workspace to a MAT-file before MATLAB
exits.

finish.m is invoked whenever you do one of the following:
- Click the close box [in the MATLAB desktop

= Select Exit MATLAB from the desktop File menu
< Type quit or exit at the Command Window prompt

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these functions for more
information.

Examples Two sample Finish.m files are provided with MATLAB in toolbox/local. Use

them to help you create your own finish.m, or rename one of the files to
finish.m to use it.

= finishsav.m—Saves the workspace to a MAT-file when MATLAB quits.

= finishdlg.m—Displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code.

button = questdlg(“Ready to quit?-,
"Exit Dialog®,"Yes","No","No");
switch button
case “Yes",
disp("Exiting MATLAB®);
%Save variables to matlab.mat
save
case "No-,
quit cancel;
end

See Also quit, startup

2-103

fitsinfo

Purpose
Syntax

Description

2-104

Return information about a FITS file

S = Fitsinfo(filename)

S = FTitsinfo(Filename)returns a structure whose fields contain information
about the contents of a Flexible Image Transport System (FITS) file. filename
is a string that specifies the name of the FITS file.

The structure, S, obtained from a basic FITS file, contains the following fields.

Information Returned From a Basic FITS File

Fieldname Description Return Type

Contents List of extensions in the file in the Cell array of
order that they occur Strings

FileModDate File modification date String

Filename Name of the file String

FileSize Size of the file in bytes Double

PrimaryData Information about the primary data Structure array
in the FITS file

A FITS file may also include any number of extensions. For such files,
fitsinfo returns a structure, S, with the fields listed above plus one or more
of the following structure arrays.

Additional Information Returned From FITS Extensions

Fieldname Description Return Type

AsciiTable ASCII Table extensions Structure array
BinaryTable Binary Table extensions Structure array
Image Image extensions Structure array
Unknown Nonstandard extensions Structure array

fitsinfo

The tables that follow show the fields of each of the structure arrays that can
be returned by fitsinfo.

Note For all Intercept and Slope fieldnames below, the equation used to
calculate actual values is, actual_value = (Slope * array _value) +

Intercept.

Fields of the PrimaryData Structure Array

Fieldname Description Return Type
DataSize Size of the primary data in bytes Double
DataType Precision of the data String
Intercept Value, used with Slope, to Double
calculate actual pixel values from
the array pixel values
Keywords Keywords, values and comments of Cell array of
the header in each column strings
MissingDataValu Value used to represent undefined Double
e data
Offset Number of bytes from beginning of Double
the file to the first data value
Size Sizes of each dimension Double array
Slope Value, used along with Intercept, Double

to calculate actual pixel values
from the array pixel values

2-105

fitsinfo

2-106

Fields of the AsciiTable Structure Array

Fieldname Description Return Type
DataSize Size of the data in the ASCII Table Double
in bytes
FieldFormat Formats in which each field is Cell array of
encoded, using FORTRAN-77 strings
format codes
FieldPos Starting column for each field Double array
FieldPrecision Precision in which the values in Cell array of
each field are stored strings
Fieldwidth Number of characters in each field Double array
Intercept Values, used along with Slope, to Double array
calculate actual data values from
the array data values
Keywords Keywords, values and comments in Cell array of
the ASCII table header strings
MissingDatavalue Representation of undefined datain Cell array of
each field strings
NFields Number of fields in each row Double array
Offset Number of bytes from beginning of Double
the file to the first data value
Rows Number of rows in the table Double
RowSize Number of characters in each row Double
Slope Values, used with Intercept, to Double array

calculate actual data values from
the array data values

fitsinfo

Fields of the BinaryTable Structure Array

Fieldname Description Return Type
DataSize Size of the data in the Binary Table, Double
in bytes. Includes any data past the
main part of the Binary Table.
ExtensionOffset Number of bytes from the beginning Double
of the file to any data past the main
part of the Binary Table
ExtensionSize Size of any data past the main part Double
of the Binary Table, in bytes
FieldFormat Data type for each field, using FITS Cell array of
binary table format codes strings
FieldPrecision Precisions in which the values in Cell array of
each field are stored strings
FieldSize Number of values in each field Double array
Intercept Values, used along with Slope, to Double array
calculate actual data values from
the array data values
Keywords Keywords, values and comments in Cell array of
the Binary Table header strings
MissingDatavValue Representation of undefined datain Cell array of
each field double
NFields Number of fields in each row Double
Offset Number of bytes from beginning of Double
the file to the first data value
Rows Number of rows in the table Double

2-107

fitsinfo

2-108

Fields of the BinaryTable Structure Array

Fieldname Description Return Type
RowSize Number of bytes in each row Double
Slope Values, used with Intercept, to Double array

calculate actual data values from
the array data values

Fields of the Image Structure Array

Fieldname Description Return Type
DataSize Size of the data in the Image Double
extension in bytes
DataType Precision of the data String
Intercept Value, used along with Slope, to Double
calculate actual pixel values from
the array pixel values
Keywords Keywords, values and comments in Cell array of
the Image header strings
MissingDataValue Representation of undefined data Double
Offset Number of bytes from the beginning Double
of the file to the first data value
Size Sizes of each dimension Double array
Slope Value, used along with Intercept, Double

to calculate actual pixel values from
the array pixel values

fitsinfo

Fields of the Unknown Structure Array

Fieldname

DataSize

DataType

Intercept

Keywords

MissingDataValue

Offset

Description Return Type
Size of the data in nonstandard Double
extensions, in bytes

Precision of the data String
Value, used along with Slope, to Double
calculate actual data values from

the array data values

Keywords, values and comments in Cell array of
the extension header strings
Representation of undefined data Double
Number of bytes from beginning of Double

the file to the first data value

Sizes of each dimension Double array

Value, used along with Intercept,to Double
calculate actual data values from

the array data values

Example

Use Fitsinfo to obtain information about FITS file, tst0012. fits. In addition

to its primary data, the file also contains three extensions: Binary Table,
Image, and ASCII Table.

S = fitsinfo("tst0012.Fits");

S =

Filename:
FileModDate:
FileSize:
Contents:
PrimaryData:
BinaryTable:
Image:
AsciiTable:

"tst0012.fits”
"27-Nov-2000 13:25:55"
109440
{"Primary*
[1x1 struct]
[1x1 struct]
[1x1 struct]
[1x1 struct]

"Binary Table® “Image® “ASCII"}

2-109

fitsinfo

The PrimaryData substructure shows that the data resides in a 102-by-109
matrix of single-precision values. There are 44,472 bytes of primary data
starting at an offset of 2,880 bytes from the start of the file.

S.PrimaryData
ans =

DataType:

Size:

DataSize:
MissingDataValue:
Intercept:

Slope:

Offset:

Keywords:

"single”
[102 109]
44472

1

0

1

2880

{25x3 cell}

Examining the ASCII Table substructure, you can see that this table has 53
rows, 59 columns, and contains 8 fields per row. The last field in each row, for
example, begins in the 55th column and contains a 4-digit integer.

S_AsciiTable
ans =

Rows:

RowSize:
NFields:
FieldFormat:
FieldPrecision:
FieldWidth:
FieldPos:
DataSize:
MissingDataValue:
Intercept:
Slope:

Offset:
Keywords:

53

59

8

{1x8 cell}

{1x8 cell}

[9 6.2000 3 10.4000 20.1500 5 1 4]
[1 11 18 22 33 54 54 55]

S_AsciiTable.FieldFormat

ans =

"A9* "F6.2"

13"

3127
{-*- -______- g w [] g w - w g w --}
[0 0 -70.2000 0 0 0 O 0]
[112.1000 111 1 1]
103680
{65x3 cell}
"E10.4" "D20.15" "A5" A1 "I4"

The ASCII Table includes 65 keyword entries arranged in a 65-by-3 cell array.

key = S.AsciiTable.Keywords

2-110

fitsinfo

See Also

key =

S._AsciiTable._Keywords

ans =
"XTENSION™ "TABLE*®
"BITPIX" [8]
"NAX1S*™ [2]
"NAXIS1* [59]

[1x48 char]
[1x48 char]
[1x48 char]
[1x48 char]

One of the entries in this cell array is shown here. Each row of the array
contains a keyword, its value, and comment.

key{2,:}

ans =
BITPIX

ans =
8

ans =

Character data 8 bits per pixel

fitsread

% Keyword

% Keyword value

% Keyword comment

2-111

fitsread

Purpose

Syntax

Description

2-112

Extract data from a FITS file

data = Fitsread(filename)

data = Ffitsread(filename, "raw")

data = Fitsread(filename, extname)

data = fitsread(filename, extname, index)

data = fitsread(filename)reads the primary data of the Flexible Image
Transport System (FITS) file specified by fi lename. Undefined data values are
replaced by NaN. Numeric data are scaled by the slope and intercept values and
are always returned in double precision.

data = fitsread(filename, extname)reads data from a FITS file according
to the data array or extension specified in extname. You can specify only one
extname. The valid choices for extname are shown in the following table.

Data Arrays or Extensions

extname Description

"primary” Read data from the primary data array
“table" Read data from the ASCII Table extension
"bintable” Read data from the Binary Table extension
"image” Read data from the Image extension
“unknown™ Read data from the Unknown extension

data = fitsread(filename, extname, index)is the same as the above
syntax, except that if there is more than one of the specified extension type
extname in the file, then only the one at the specified index is read.

data = fitsread(filename, "raw", ...)reads the primary or extension
data of the FITS file, but, unlike the above syntaxes, does not replace undefined
data values with NaN and does not scale the data. The data returned has the
same class as the data stored in the file.

fitsread

Example Read FITS file, tst0012.Fits, into a 109-by-102 matrix called data.

data = fitsread("tst0012.fits");

whos data
Name Size Bytes Class
data 109x102 88944 double array

Here is the beginning of the data read from the file.

data(1:5,1:6)

ans =
135.2000 134.9436 134.1752 132.8980 131.1165 128.8378
137.1568 134.9436 134.1752 132.8989 131.1167 126.3343
135.9946 134.9437 134.1752 132.8989 131.1185 128.1711
134.0093 134.9440 134.1749 132.8983 131.1201 126.3349
131.5855 134.9439 134.1749 132.8989 131.1204 126.3356

Read only the Binary Table extension from the file.

data = fitsread("tst0012.fits", “bintable®)

data =
Columns 1 through 4
{11x1 cell} [11x1 intl6] [11x3 uint8] [11x2 double]
Columns 5 through 9
[11x3 cell] {11x1 cell} [11x1 int8] {11x1 cell} [11x3 int32]
Columns 10 through 13
[11x2 int32] [11x2 single] [11x1 double] [11x1 uint8]

See Also fitsinfo

2-113

fix

Purpose Round towards zero
Syntax B = Fix(A)
Description B = Tix(A) rounds the elements of A toward zero, resulting in an array of

integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.6000i
fix(a)
ans =
Columns 1 through 4
-1.0000 0 3.0000 5.0000

Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

2-114

flipdim

Purpose
Syntax

Description

Examples

See Also

Flip array along a specified dimension

B = flipdim(A,dim)

B = Fflipdim(A,dim) returns A with dimension dim flipped.

When the value of dimis 1, the array is flipped row-wise down. When dimis 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

flipdim(A,1) where

A =
1 4
2 5
3 6
produces
3 6
2 5
1 4

fliplr, flipud, permute, rot90

2-115

fliplr

Purpose Flip matrices left-right
Syntax B = Fliplr(A)
Description B = Ffliplr(A) returns A with columns flipped in the left-right direction, that

is, about a vertical axis.

If Ais a row vector, then fliplr(A) returns a vector of the same length with
the order of its elements reversed. If A is a column vector, then fliplr(A)
simply returns A.

Examples If A is the 3-by-2 matrix,
A =
1 4
2 5
3 6

then fliplr(A) produces

4 1
5 2
6 3

If A is a row vector,

A =
1 3 5 7 9

then fliplr(A) produces
9 7 5 3 1

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

See Also flipdim, flipud, rot90

2-116

flipud

Purpose
Syntax

Description

Examples

Limitations

Flip matrices up-down

B = flipud(A)

B = flipud(A) returns A with rows flipped in the up-down direction, that is,
about a horizontal axis.

If Ais acolumn vector, then flipud(A) returns a vector of the same length with
the order of its elements reversed. If A is a row vector, then Flipud(A) simply
returns A.

If A is the 3-by-2 matrix,

A =
1 4
2 5
3 6

then flipud(A) produces

3 6
2 5
1 4

If A is a column vector,

A =
3
5
7

then flipud(A) produces

A =
7
5
3

The array being operated on cannot have more than two dimensions. This

limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

2-117

flipud

See Also flipdim, fliplr, rot90

2-118

floor

Purpose Round towards minus infinity
Syntax B = floor(A)
Description B = floor(A) rounds the elements of A to the nearest integers less than or

equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]
a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.6000i
floor(a)
ans =
Columns 1 through 4
-2.0000 -1.0000 3.0000 5.0000

Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

2-119

flops

Purpose Count floating-point operations

Description This is an obsolete function. With the incorporation of LAPACK in MATLAB
version 6, counting floating-point operations is no longer practical.

2-120

flow

Purpose

Syntax

Description

See Also

A simple function of three variables

v = Flow
v = flow(n)
v = flow(X,y,z)

[x.y.z,v] = flow(...)

flow, a function of three variables, is the speed profile of a submerged jet
within a infinite tank. flow is useful for demonstrating slice, interp3, and for
generating scalar volume data.

v = Fflow produces a 50-by-25-by-25 array.
v = flow(n) produces a 2n-by-n-by-n array.
v = flow(x,Yy,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume data.

“Volume Visualization” for related functions

2-121

fmin

Purpose

Syntax

Description

Arguments

2-122

Minimize a function of one variable

Note The fmin function was replaced by fminbnd in Release 11 (MATLAB
5.3). In Release 12 (MATLAB 6.0), fmin displays a warning message and calls
fminbnd.

x = fmin("fun”® ,x1,x2)
x = fmin(*fun® ,x1,x2,options)
x = fmin(*fun®,x1,x2,options,P1,P2, ._.)

[x,options] = fmin(...)

x = fmin("fun”,x1,x2) returns a value of x which is a local minimizer of
fun(x) in the interval x; <x<X,.

x = fmin("fun”,x1,x2,options) does the same as the above, but uses
options control parameters.

x = fmin("fun",x1,x2,options,P1,P2,...) doesthe same as the above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Pass an empty
matrix for options to use the default value.

[x,options] = fmin(...) returns, in options(10), a count of the number of
steps taken.

x1,x2 Interval over which fun is minimized.
P1,P2... Arguments to be passed to fun.
fun A string containing the name of the function to be minimized.

fmin

Examples

Algorithm

options A vector of control parameters. Only three of the 18
components of options are referenced by fmin; Optimization
Toolbox functions use the others. The three control options
used by fmin are:

=« options(1) — If this is nonzero, intermediate steps in the so-
lution are displayed. The default value of options(1) is 0.

= options(2) — This is the termination tolerance. The default
value is 1.e-4.

= options(14) — This is the maximum number of steps. The
default value is 500.

fmin("cos",3,4) computes 1t to a few decimal places.

fmin("cos",3,4,[1,1.e-12]) displays the steps taken to compute 11 to 12
decimal places.

To find the minimum of the function f(x) = x 3_2x—5 on the interval 0,2),
write an M-file called £.m.

function y = f(X)
y = X."3-2*x-5;

Then invoke fmin with
x = fmin("f", 0, 2)
The result is

X =
0.8165

The value of the function at the minimum is
11 €9

y

y =
-6.0887

The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithms is given in [1].

2-123

fmin

See Also fmins, fzero, foptions in the Optimization Toolbox (or type help foptions).

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

2-124

fminbnd

Purpose

Syntax

Description

Minimize a function of one variable on a fixed interval

x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,._..)

[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = Ffminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun in the interval x1 <= x <= x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

Display Level of display. "off" displays no output; "iter"
displays output at each iteration; "final' displays
just the final output; "notify" (default) dislays
output only if the function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.
Max1ter Maximum number of iterations allowed.
TolX Termination tolerance on x.

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function,
fun(x,P1,P2,...). Use options=[] as a placeholder if no options are set.

[x,fval]l = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns avalue exitflag that describes
the exit condition of fminbnd:

2-125

fminbnd

Arguments

Examples

2-126

>0 Indicates that the function converged to a solution x.
0 Indicates that the maximum number of function evaluations was
exceeded.
<0 Indicates that the function did not converge to a solution.

[x,fval,exitflag,output] = fminbnd(...) returnsastructure output that
contains information about the optimization:

output.algorithm The algorithm used
output. funcCount The number of function evaluations
output.iterations The number of iterations taken

fun is the function to be minimized. fun accepts a scalar x and returns a scalar
T, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminbnd(@myfun,x0)
where myfun is a MATLAB function such as

function ¥ = myfun(X)
f=__. % Compute function value at x.

fun can also be an inline object.
x = fminbnd(inline("sin(x*x)"),x0);
Other arguments are described in the syntax descriptions above.
x = fminbnd(@cos, 3,4) computes 1t to a few decimal places and gives a
message on termination.

[x,fval,exitflag] =
fminbnd(@cos,3,4,optimset("TolX",1le-12, "Display”, "off"))

computes 1 to about 12 decimal places, suppresses output, returns the
function value at x, and returns an exitflag of 1.

The argument fun3can also be an inline function. To find the minimum of the
function f(x) = x "—2x -5 on the interval (0,2), create an inline object f

fminbnd
|

f = inline("x."3-2*x-5%);
Then invoke fminbnd with

x = fminbnd(F, 0, 2)
The result is

X =
0.8165

The value of the function at the minimum is

y = FO
y =
-6.0887
Algorithm The algorithm is based on Golden Section search and parabolic interpolation.

A Fortran program implementing the same algorithm is given in [1].

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.
See Also fminsearch, fzero, optimset, function_handle (@), inline

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

2-127

fmins

Purpose

Syntax

Description

Arguments

2-128

Minimize a function of several variables

Note The fmins function was replaced by fminsearch in Release 11
(MATLAB 5.3). In Release 12 (MATLAB 6.0), fmins displays a warning
message and calls fminsearch.

x = fmins("fun®,x0)

x = fmins("fun®,x0,options)

x = fmins("fun®,x0,options,[],P1,P2, ...)
[x,options] = fmins(...)

x = fmins("fun~,x0) returns a vector x which is a local minimizer of fun(x)
near X .

x = fmins("fun”,x0,options) does the same as the above, but uses options
control parameters.

x = fmins("fun”,x0,options,[]1,P1,P2,...) does the same as above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Passanempty
matrix for options to use the default value.

[x,options] = fmins(...) returns, in options(10), a count of the number
of steps taken.

x0 Starting vector.

P1,P2... Arguments to be passed to fun.

1 Argument needed to provide compatibility with fminu in the
Optimization Toolbox.

fun A string containing the name of the objective function to be
minimized. fun(x) is a scalar valued function of a vector
variable.

fmins

options A vector of control parameters. Only four of the 18
components of options are referenced by fmins;
Optimization Toolbox functions use the others. The four
control options used by fmins are:

=« options(1) — If this is nonzero, intermediate steps in the
solution are displayed. The default value of options(1) is
0.

=« options(2) and options(3) — These are the termination
tolerances for x and function(x), respectively. The de-
fault values are 1.e-4.

= options(14) — This is the maximum number of steps.
The default value is 500.

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function
2
f(x) = 100(x,—x2) +(1-x,)?

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

function f = banana(x)
T = 100*(X(2)-x(1)"2)"2+(1-x(1))"2;

The statements

[x,out] = fmins("banana®,[-1.2, 1]);
X
out(10)

produce

X =
1.0000 1.0000
ans =

165

2-129

fmins

Algorithm

See Also

References

2-130

This indicates that the minimizer was found to at least four decimal places in
165 steps.

Move the location of the minimum to the point [a,a”2] by adding a second
parameter to banana.m.

function ¥ = banana(x,a)
if nargin < 2,a = 1; end
f = 100*(x(2)-x()"2)"2+(a-x(1))"2;

Then the statement
[x,out] = fmins("banana®, [-1.2, 1], [0, 1.e-81, [1., sart(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default.

The algorithm is the Nelder-Mead simplex search described in the two refer-
ences. It is a direct search method that does not require gradients or other
derivative information. If n is the length of x, a simplex in n-dimensional space
is characterized by the n+1 distinct vectors which are its vertices. In two-space,
a simplex is a triangle; in three-space, it is a pyramid.

At each step of the search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

fmin, foptions in the Optimization Toolbox (or type help foptions).
[1] Nelder, J. A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer Journal, Vol. 7, p. 308-313.

[2] Dennis, J. E. Jr. and D. J. Woods, “New Computing Environments:
Microcomputers in Large-Scale Computing,” edited by A. Wouk, SIAM, 1987,
pp. 116-122.

fminsearch

Purpose

Syntax

Description

Minimize a function of several variables

x = Ffminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(fun,x0,options,P1,P2,._.)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of
the function described in fun. x0 can be a scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

Display Level of display. "off" displays no output; "iter" displays
output at each iteration; “final " displays just the final
output; "notify" (default) dislays output only if the
function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.
Max1ter Maximum number of iterations allowed.
TolX Termination tolerance on x.

x = fminsearch(fun,x0,options,P1,P2,...) passesthe problem-dependent
parameters P1, P2, etc., directly to the function fun. Use options = [] asa
placeholder if no options are set.

[x,fval]l = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

2-131

fminsearch

Arguments

Examples

2-132

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

>0 Indicates that the function converged to a solution x.
0 Indicates that the maximum number of function evaluations was
exceeded.
<0 Indicates that the function did not converge to a solution.

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

output.algorithm The algorithm used
output. funcCount The number of function evaluations

output.iterations The number of iterations taken

fun is the function to be minimized. It accepts an input x and returns a scalar
T, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminsearch(@myfun,x0,A,b)
where myfun is a MATLAB function such as

function ¥ = myfun(X)
f= ... % Compute function value at x

fun can also be an inline object.
x = fminsearch(inline("sin(x*x)"),x0,A,b);

Other arguments are described in the syntax descriptions above.

A classic test example for multidimensional minimization is the Rosenbrock
banana function

f(x) = 100(x2—xf)2+(1—x1)2

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

fminsearch

function f = banana(x)
f = 100*(xX(2)-x(D)"2)M2+(1-x(1))H)"2;

The statement
[x,fval] = fminsearch(@banana,[-1.2, 1])
produces

X =
1.0000 1.0000
fval =

8.1777e-010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a”2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2,a = 1; end
T = 100*(X(2)-x()"2)"2+(a-x(1))"2;

Then the statement

[x,fval] = fminsearch(@banana, [-1.2, 1],
optimset("TolX",1e-8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

Algorithm fminsearch uses the simplex search method of []. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is

compared with the function’s values at the vertices of the simplex and, usually,

2-133

fminsearch

Limitations

See Also

References

2-134

one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, X must only consist
of real numbers and f(x) must only return real numbers. When x has complex
variables, they must be split into real and imaginary parts.

fminbnd, optimset, function_handle (@), inline
Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence

Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM
Journal of Optimization, Vol. 9 Number 1, pp. 112-147, 1998.

fopen

Purpose

Syntax

Description

Open a file or obtain information about open files

fid = fopen(filename)

fid = fopen(filename,permission)

[fid,message] = fopen(Filename,permission,machineformat)
fids = fopen(“all™)

[filename,permission, machineormat] = fopen(fid)

fid = fopen(Filename) opens the file filename for read access. (On PCs,
fopen opens files for binary read access.)

fidis ascalar MATLAB integer, called a file identifier. You use the fid as the
first argument to other file input/output routines. If fopen cannot open the file,
it returns -1. Two file identifiers are automatically available and need not be opened.

They are fid=1 (standard output) and fid=2 (standard error).

fid = fopen(filename,permission) opens the file filename in the mode
specified by permission. permission can be:

“re Open file for reading (default).

Open file, or create new file, for writing; discard existing
contents, if any.

a Open file, or create new file, for writing; append data to the

end of the file.

“r+* Open file for reading and writing.

"w+" Open file, or create a new file, for reading and writing;
discard existing contents, if any.

Tat+”t Open file, or create new file, for reading and writing; append
data to the end of the file.

“A" Append without automatic flushing; used with tape drives

"W Write without automatic flushing; used with tape drives

filename can be a MATLABPATH relative partial pathname if the file is opened
for reading only. A relative path is always searched for first with respect to the

2-135

fopen

2-136

current directory. If it is not found and reading only is specified or implied then
fopen does an additional search of the MATLABPATH

Files can be opened in binary mode (the default) or in text mode. In binary
mode, no characters are singled out for special treatment. In text mode on the
PC, , the carriage return character preceding a newline character is deleted on input
and added before the newline character on output. To open in text mode, add
“t” to the permission string, for example "rt* and "wt+". (On Unix, text and
binary mode are the same so this has no effect. But on PC systems this is
critical.)

Note If the file is opened in update mode (‘+'), an input command like fread,
fscanf, fgets, or fgetl cannot be immediately followed by an output
command like fwrite or fprintf without an intervening fseek or frewind.
The reverse is also true. Namely, an output command like fwrite or fprintf
cannot be immediately followed by an input command like fread, fscanf,
fgets, or fgetl without an intervening fseek or frewind.

[fid,message] = fopen(filename,permission) opens a file as above. If it
cannot open the file, fid equals -1 and message contains a system-dependent
error message. If fopen successfully opens a file, the value of message is empty.

[fid,message] = fopen(filename,permission,machineformat) opens the
specified file with the specified permission and treats data read using fread
or data written using fwrite as having a format given by machineformat.
machineformat is one of the following strings:

"cray" or "c" Cray floating point with big-endian byte
ordering

“ieee-be" or "b" IEEE floating point with big-endian byte
ordering

“ieee-le”or "I* IEEE floating point with little-endian byte
ordering

fopen

Examples

See Also

“ieee-be._164" or "s* IEEE floating point with big-endian byte
ordering and 64-bit long data type

“ieee-le.164" or "a" IEEE floating point with little-endian byte
ordering and 64-bit long data type

"native” or "n- Numeric format of the machine on which
MATLARB is running (the default).

"vaxd® or "d* VAX D floating point and VAX ordering
"vaxg" or "g-" VAX G floating point and VAX ordering

fids = fopen(“all™) returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[filename,permission,machineformat] = fopen(fid) returns the
filename, permission string, and machineformat string associated with the
specified file. An invalid fid returns empty strings for all output arguments.

The *w= and "A* permissions are designed for use with tape drives and do not
automatically perform a flush of the current output buffer after output
operations. For example, open a 1/4" cartridge tape on a SPARCstation for
writing with no auto-flush:

fid = fopen("/dev/rst0","W")

The example uses fopen to open a file and then passes the fid, returned by
fopen, to other file 1/O functions to read data from the file and then close the
file.

fid=fopen("fgetl.m");

while 1
tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end

fclose(fid);

fclose, ferror, fprintf, fread, fscanf, fseek, ftell, furite

2-137

fopen (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

2-138

Connect a serial port object to the device
fopen(obj)
obj A serial port object or an array of serial port objects.

fopen(obj) connects obj to the device.

Before you can perform a read or write operation, obj must be connected to the
device with the fopen function. When obj is connected to the device:

= Data remaining in the input buffer or the output buffer is flushed.
= The Status property is set to open.

= The BytesAvai lable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the device. You can connect only one serial port object
to a given device.

Some properties are read-only while the serial port object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

If you use the help command to display help for fopen, then you need to supply
the pathname shown below.

help serial/fopen
This example creates the serial port object s, connects s to the device using
fopen, writes and reads text data, and then disconnects s from the device.

s = serial("COM1%);

fopen (serial)

fopen(s)
fprintf(s, "*IDN?")
idn = fscanf(s);
fclose(s)

See Also Functions
fclose

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

2-139

for

Purpose

Syntax

Description

Examples

2-140

Repeat statements a specific number of times

for variable = expression
statements
end

The general format is
for variable = expression
statement
statement
end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.

Assume k has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(k,k) % Preallocate matrix
for m = 1:k
for n = 1:k
a(m,n) = 1/(m+n -1);
end
end

Step s with increments of -0.1

for s = 1.0: -0.1: 0.0,..., end

Successively set e to the unit n-vectors:

for e = eye(n),..., end
The line
for V =A,..., end

for

has the same effect as
for k = 1:n,V = A(:,K);..., end

except k is also set here.

See Also end, while, break, continue, return, if, switch, colon

2-141

format

Purpose

Graphical
Interface

Syntax

Description

2-142

Control display format for output

As an alternative to format, use preferences. Select Preferences from the File
menu in the MATLAB desktop and use Command Window preferences.

format
format type
format(“type*)

MATLAB performs all computations in double precision. Use the format
function to control the output format of the numeric values displayed in the
Command Window. The format function affects only how numbers are
displayed, not how MATLAB computes or saves them. The specified format
applies only to the current session. To maintain a format across sessions,
instead use MATLAB preferences.

format by itself, changes the output format to the default type, short, which is
5-digit scaled, fixed-point values.

format type changes the format to the specified type. The table below
describes the allowable values for type and provides an example for pi, unless
otherwise noted. To see the current type file, use get(0, "Format™), or for
compact versus loose, use get(0, "FormatSpacing”).

Value for type Result Example

+ +, -, blank +

bank Fixed dollars and cents 3.14

compact Suppresses excess line theta = pi/2
feeds to show more theta=
output in a single screen. 1.5708

Contrast with loose.

format

Examples

Value for type Result Example
hex Hexadecimal 400921fb54442d18
(hexadecimal
representation of a
binary double-precision
number)
long 15-digit scaled fixed point 3.14159265358979
long e 15-digit floating point 3.141592653589793e+00
long g Best of 15-digit fixed or 3.14159265358979
floating point
loose Adds linefeeds to make theta = pi/2
output more readable.
Contrast with compact. theta=
1.5708
rat Ratio of small integers 355/113
short 5-digit scaled fixed point 3.1416
short e 5-digit floating point 3.1416e+00
short g Best of 5-digit fixed or 3.1416

floating point

format (" type~) is the function form of the syntax.

Change the format to long by typing

format long

View the result for the value of pi by typing

pi

and MATLAB returns

ans =

3.14159265358979

2-143

format

Algorithms

See Also

2-144

View the current format by typing
get(0, "Format*")
MATLAB returns

ans =
long

Set the format to short e by typing

format short e

or use the function form of the syntax

format(“short®,"e")

If the largest element of a matrix is larger than 108 or smaller than 1073,
MATLAB applies a common scale factor for the short and long formats. The
function format + displays +, -, and blank characters for positive, negative, and
zero elements. format hex displays the hexadecimal representation of a binary
double-precision number. format rat uses a continued fraction algorithm to
approximate floating-point values by ratios of small integers. See rat.m for the
complete code.

display, fprintf, num2str, rat, sprintf, spy

fplot

Purpose

Syntax

Description

Plot a function between specified limits

fplot("function®,limits)

fplot("function®, limits,LineSpec)
fplot("function”, limits, tol)
fplot("function”, limits, tol,LineSpec)
fplot("function”,limits,n)

[X,Y] fplot("function®,limits,...)

[---1 plot("function®,limits,tol,n,LineSpec,P1,P2,...)

fplot plots a function between specified limits. The function must be of the
formy = f(x), where x is a vector whose range specifies the limits, and y is a
vector the same size as x and contains the function’s value at the points in x
(see the first example). If the function returns more than one value for a given
X, then y is a matrix whose columns contain each component of f(x) (see the
second example).

fplot("function”, limits) plots "function” between the limits specified by
limits. limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axis limits, ([xmin xmax ymin ymax]).

"function” must be the name of an M-file function or a string with variable x
that may be passed to eval, such as "sin(x)", "diric(x,10)" or
"[sin(x),cos(xX)]".

The function £(x) must return a row vector for each element of vector x. For
example, if £(x) returns [f1(x) ,F2(x),F3(x)] then for input [x1;x2] the
function should return the matrix

fL(x1) F2(x1) F3(x1)
fL(x2) F2(x2) F3(x2)

fplot(~function”, limits,LineSpec) plots "function” using the line
specification LineSpec.

fplot(~function~, limits,tol) plots "function” using the relative error
tolerance tol (The default is 2e-3, i.e., 0.2 percent accuracy).

2-145

fplot

Remarks

Examples

2-146

fplot("function”, limits,tol,LineSpec) plots "function” using the
relative error tolerance tol and a line specification that determines line type,
marker symbol, and color.

fplot("function”, limits,n) with n >= 1 plots the function with a minimum
of n+1 points. The default n is 1. The maximum step size is restricted to be
(1/n)*(xmax-xmin).

fplot(fun, lims,...) acceptscombinations of the optional arguments tol, n,
and LineSpec, in any order.

[X,Y] = fplot("function”, limits,...) returnstheabscissas and ordinates
for "function” in X and Y. No plot is drawn on the screen, however you can plot
the function using plot(X,Y).

[---1 = plot("function”,limits,tol,n,LineSpec,P1,P2,...) enablesyou
to pass parameters P1, P2, etc. directly to the function "function™:
Y = function(X,P1,P2,...)

To use default values for tol, n, or LineSpec, you can pass in the empty matrix
(LD

fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of change is
the greatest.

Plot the hyperbolic tangent function from -2 to 2:

fplot

fplot(“"tanh®,[-2 2])

Create an M-file, myfun, that returns a two column matrix:

function Y = myfun(X)
Y(:,1) = 200LIn(x(:))-/x(2);
Y(:,2) = x(2)-"2;

Plot the function with the statement:

fplot("myfun*,[-20 20]

2-147

fplot

See Also

2-148

400

350 q

250 h

200 h

150 9

100 9

-50 I I | I 1 I I
-20 -15 -10 -5 0 5 10 15 20

Addition Examples
subplot(2,2,1);fplot("humps=,[0 1])
subplot(2,2,2);fplot("abs(exp(-j*x*(0:9))*ones(10,1))",[0 2*pi])
subplot(2,2,3);fplot("[tan(X),sin(x),cos(xX)]",2*pi*[-1 1 -1 1])
subplot(2,2,4);fplot("sin(1./x)",[0.01 0.1],1e-3)

eval, ezplot, feval, LineSpec, plot

“Function Plots” for related functions

fprintf

Purpose
Syntax

Description

Write formatted data to file
count = fprintf(fid,format,A,...)

count = fprintf(fid,format,A, . ..) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid causes output to appear on the screen.

Format String

The format argument is a string containing C language conversion
specifications. A conversion specification controls the notation, alignment,
significant digits, field width, and other aspects of output format. The format
string can contain escape characters to represent non-printing characters such
as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional
and required elements:

= Flags (optional)

= Width and precision fields (optional)

= A subtype specifier (optional)

=« Conversion character (required)

You specify these elements in the following order:

Start of conversion specification %-12.5e Conversion character

Flags A L
Field width Precision

2-149

fprintf

Flags
You can control the alignment of the output using any of these optional flags.

Character Description Example

A minus sign (-) Left-justifies the converted argument in %5.2d
its field.

A plus sign (+) Always prints a sign character (+ or -). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05 .2d

Field Width and Precision Specifications
You can control the width and precision of the output by including these
options in the format string.

Character Description Example

Field width A digit string specifying the minimum %6F
number of digits to be printed.

Precision A digit string including a period (.) %6 .2F
specifying the number of digits to be
printed to the right of the decimal point.

Conversion Characters
Conversion characters specify the notation of the output.

Specifier Description

%C Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in

3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

2-150

fprintf

Specifier Description
%F Fixed-point notation
%g The more compact of %e or %f, as defined in [2].

%G
%1
%o
%s
%u
%X

%X

Insignificant zeros do not print.

Same as %g, but using an uppercase E

Decimal notation (signed)

Octal notation (unsigned)

String of characters

Decimal notation (unsigned)

Hexadecimal notation (using lowercase letters a—¥)

Hexadecimal notation (using uppercase letters A—F)

Conversion characters %o, %u, %x, and %X support subtype specifiers. See
Remarks for more information.

Escape Characters

This table lists the escape character sequences you use to specify non-printing
characters in a format specification.

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return
\t Horizontal tab
\\ Backslash

2-151

fprintf

Character Description
\"or" Single quotation mark
(two single
quotes)
%% Percent character
Remarks The fprintf function behaves like its ANSI C language namesake with these

exceptions and extensions.

= |f you use fprintf to convert a MATLAB double into an integer, and the
double contains a value that cannot be represented as an integer (for
example, it contains a fraction), MATLAB ignores the specified conversion
and outputs the value in exponential format. To successfully perform this
conversion, use the fix, floor, ceil, or round functions to change the value
in the double into a value that can be represented as an integer before
passing it to sprintf.

= The following, non-standard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like "%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

For example, to print a double value in hexadecimal use the format "%bx"

= The fprintf function is vectorized for nonscalar arguments. The function
recycles the format string through the elements of A (columnwise) until all
the elements are used up. The function then continues in a similar manner
through any additional matrix arguments.

2-152

fprintf

Examples

Note fprintf displays negative zero (-0) differently on some platforms, as
shown in the following table.

Conversion Character

Platform %e or %E %f %g or %G
PC 0.000000e+000 0.000000 0
SGlI 0.000000e+00 0.000000 0
HP700 -0.000000e+00 -0.000000 0
Others -0.000000e+00 -0.000000 -0

The statements

X = 0:.1:1;

y = [x; exp(X)];

fid = fopen("exp.-txt®, "w");
fprintf(Fid, "%6.2F %12.8F\n",y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092

1.00 2.71828183

The command

fprintf("A unit circle has circumference %g-\n",2[pi)

displays a line on the screen:

A unit circle has circumference 6.283186.

2-153

fprintf

See Also

References

2-154

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,"1t""s Friday-\n")
displays on the screen:

It"s Friday.
The commands

B =1[8.8 7.7; 8800 7700]
fprintf(l1,"X is %6.2F meters or %8.3Ff mm\n*,9.9,9900,B)

display the lines:

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Explicitly convert MATLAB double-precision variables to integral values for
use with an integral conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format:

a = [6 10 14 44];
fprintfF("%9X\n",a + (a<0)[2"32)
6
A
E
2C

fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite, disp

[1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

fprintf (serial)

Purpose

Syntax

Arguments

Description

Remarks

Write text to the device

fprintf(obj,“cmd*®)

fprintf(obj, “"format”, "cmd")
fprintf(obj,“cmd*®, "mode™)
fprintf(obj, "format”,"cmd”, "mode*)

obj A serial port object.

"cmd” The string written to the device.

“format* C language conversion specification.

'mode’ Specifies whether data is written synchronously or

asynchronously.

fprintf(obj, "cmd™) writes the string cmd to the device connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj, "format”, "cmd") writes the string using the format specified by
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d, i, 0, u, X,
X, f, e, E, g, G, ¢, and s. Refer to the sprintf file I/O format specifications or a
C manual for more information.

fprintf(obj, cmd", "mode ™) writes the string with command line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj, "format™, "cmd", "mode ™) writes the string using the specified

format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

Before you can write text to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of

2-155

fprintf (serial)

2-156

open. Anerror is returned if you attempt to perform a write operation while obj
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fprintf, then you need to
supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations

By default, text is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

= The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

= The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Controlling Access to the MATLAB Command Line.

Rules for Completing a Write Operation with fprintf

A synchronous or asynchronous write operation using fprintf completes
when:

= The specified data is written.
= The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

fprintf (serial)

Example

See Also

Rules for Writing the Terminator

All occurrences of \n in cmd are replaced with the Terminator property value.
Therefore, when using the default format %s\n, all commands written to the
device will end with this property value. The terminator required by your
device will be described in its documentation.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial("COM1%);

fopen(s)

fprintf(s, "RS232?7%)

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you

might want to suppress writing the terminator. To do so, you must explicitly

specify a format for the data that does not include the terminator, or configure
the terminator to empty.

fprintf(s, "%s", "RS232?")

Functions
fopen, fwrite, stopasync

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status,
TransferStatus, ValuesSent

2-157

frame2im

Purpose
Syntax

Description

See Also

2-158

Convert movie frame to indexed image

frame2im(F)

[X,Map]

[X,Map] = frame2im(F) converts the single movie frame F into the indexed
image X and associated colormap Map. The functions getframe and im2frame
create a movie frame. If the frame contains truecolor data, then Map is empty.

getframe, im2frame, movie

“Bit-Mapped Images” for related functions

frameedit

Purpose

Syntax

Description

Create and edit print frames for Simulink and Stateflow block diagrams

frameedit
frameedit filename

frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (. fig) previously created and saved
using frameedit.

2-159

frameedit

Remarks This illustrates the main features of the PrintFrame Editor.

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add,

Get help for the PrintFrame Editor. and remove cells

| PrintFrame Editor
File Help

splitcelll deletecelll

add row | delete row |

Fill

I Tent 'I Add |
Add 1

and Align Llclr
remove
Zoom in or
out on
selected
SIEK r ‘ 3
Use these buttons to create and edit Use these Use the list box and button to
buttons to add information in cells, such
align as text or the date.
information

Closing the PrintFrame Editor

To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

2-160

frameedit

Printing Simulink Block Diagrams with Print Frames

Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor

For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.

2-161

fread

Purpose

Syntax

Description

2-162

Read binary data from file

[A,count]
[A,count]

fread(fid,size,precision)
fread(fid,size,precision,skip)

[A,count] = fread(fid,size,precision) reads binary data from the
specified file and writes it into matrix A. Optional output argument count
returns the number of elements successfully read. fid is an integer file
identifier obtained from fopen.

size is an optional argument that determines how much data is read. If size
is not specified, fread reads to the end of the file and the file pointer is at the
end of the file (see feof for details). Valid options are:

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Reads enough elements to fill an m—by—n matrix, filling in elements
in column order, padding with zeros if the file is too small to fill the
matrix. n can be specified as inf, but m cannot.

precision is a string that specifies the format of the data to be read. It
commonly contains a datatype specifier such as int or float, followed by an
integer giving the size in bits. Any of the strings in the following table, either
the MATLAB version or their C or Fortran equivalent, may be used. If precision
is not specified, the default is "uchar"..

MATLAB C or Fortran Interpretation

"schar" "signed char" Signed character; 8 bits
"uchar* "unsigned char*® Unsigned character; 8 bits
"int8" "integer>1- Integer; 8 bits

"intl6" Tinteger*2- Integer; 16 bits

"int32° "integer*4- Integer; 32 bits

fread

MATLAB C or Fortran Interpretation

"int64" "integer*8- Integer; 64 bits

"uint8" "integer*1- Unsigned integer; 8 bits
"uintl6" "integer*2- Unsigned integer; 16 bits
"uint32- “integer*4- Unsigned integer; 32 bits
"uinté4- "integer*8" Unsigned integer; 64 bits
"float32" "real*4" Floating-point; 32 bits
"float64" “real*8" Floating-point; 64 bits
“double- "real*8" Floating-point; 64 bits

The following platform dependent formats are also supported but they are not
guaranteed to be the same size on all platforms.

MATLAB C or Fortran Interpretation

“char" "char*1" Character; 8 bits

"short” "short” Integer; 16 bits

"int” “int" Integer; 32 bits

“long" “long" Integer; 32 or 64 bits

"ushort” "unsigned short” Unsigned integer; 16 bits
“uint” "unsigned int" Unsigned integer; 32 bits
"ulong" "unsigned long" Unsigned integer; 32 or 64 bits
"float" "float" Floating-point; 32 bits

2-163

fread

The following formats map to an input stream of bits rather than bytes.

MATLAB C or Fortran Interpretation
"bitN" - Signed integer; N bits (1 <N <64)
"ubitN"® - Unsigned integer; N bits (1 <N <64)

By default, numeric values are returned in class double arrays. To return
numeric values stored in classes other than double, create your precision
argument by first specifying your source format, and then following it with the
characters “=>", and finally specifying your destination format. You are not
required to use the exact name of a MATLAB class type for destination. (See
class for details). fread translates the name to the most appropriate MATLAB
class type. If the source and destination formats are the same, the following
shorthand notation can be used.

*source

which means

source=>source

This table shows some example precision format strings.

“uint8=>uint8" Read in unsigned 8-bit integers and save them in
an unsigned 8-bit integer array.

"*uint8* Shorthand version of the above.

"bit4=>int8" Read in signed 4-bit integers packed in bytes and

save them in a signed 8-bit array. Each 4-bit
integer becomes an 8-bit integer.

"double=>real*4" Read in doubles, convert and save as a 32-bit
floating point array.

[A,count] = fread(fid,size,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip after each precision value

2-164

fread

Examples

is read. If precision specifies a bit format, like "bitN" or "ubitN", the skip
argument is interpreted as the number of bits to skip.

When skip is used, the precision string may contain a positive integer
repetition factor of the form *N** which prepends the source format
specification, such as “40*uchar".

Note Do not confuse the asterisk (*) used in the repetition factor with the
asterisk used as precision format shorthand. The format string “40*uchar" is
equivalent to "40*uchar=>double”, not "40*uchar=>uchar".

When skip is specified, fread reads in, at most, a repetition factor number of
values (default is 1), skips the amount of input specified by the skip argument,
reads in another block of values, again skips input, and so on, until size
number of values have been read. If a skip argument is not specified, the
repetition factor is ignored. Use the repetition factor with the skip argument
to extract data in noncontiguous fields from fixed length records.

If the input stream is bytes and fread reaches the end of file (see feof) in the
middle of reading the number of bytes required for an element, the partial
result is ignored. However, if the input stream is bits, then the partial result is
returned as the last value. If an error occurs before reaching the end of file, only
full elements read up to that point are used.

For example,

type fread.m

displays the complete M-file containing this fread help entry. To simulate this
command using fread, enter the following:

fid = fopen("fread.m","r");
F = fread(fid);
s = char(F")

In the example, the fread command assumes the default size, inf, and the
default precision, “uchar-. fread reads the entire file, converting the unsigned
characters into a column vector of class "double” (double precision floating
point). To display the result as readable text, the "double” column vector is

2-165

fread

See Also

2-166

transposed to a row vector and converted to class "char* using the char
function.

As another example,

s = fread(fid, 120, "40*uchar=>uchar*®,8);

reads in 120 characters in blocks of 40, each separated by 8 characters. Note
that the class type of s is "uint8* since it is the appropriate class
corresponding to the destination format, “uchar". Also, since 40 evenly divides
120, the last block read is a full block which means that a final skip will be done
before the command is finished. If the last block read is not a full block then
fread will not finish with a skip.

See fopen for information about reading Big and Little Endian files.

fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite, feof

fread (serial)

Purpose Read binary data from the device

Syntax A = fread(obj,size)
A = fread(obj,size, "precision®)
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments obj A serial port object.
size The number of values to read.

"precision” The number of bits read for each value, and the interpretation
of the bits as character, integer, or floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.
Description A = fread(obj,size) reads binary data from the device connected to obj, and

returns the data to A. The maximum number of values to read is specified by
size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m—by—n matrix in column
order.

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

A = fread(obj,size, "precision”) reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By

2-167

fread (serial)

Remarks

2-168

default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

If you use the help command to display help for fread, then you need to supply
the pathname shown below.

help serial/fread
Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

= The specified number of values are read.
= The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

fread (serial)

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character
Integer int8 8-bit integer
intl6é 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uintl6 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer
Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

2-169

fread (serial)

See Also Functions
fgetl, fgets, fopen, fscanf

Properties
BytesAvailable, BytesAvai lableFcn, InputBufferSize, Status, Terminator,
ValuesReceived

2-170

freeserial

Purpose

Syntax

Arguments

Description

Remarks

See Also

Release hold on a serial port

freeserial
freeserial ("port*)
freeserial (obj)

"port” A serial port name, or a cell array of serial port names

obj A serial port object, or an array of serial port objects.

freeserial releases the hold MATLAB has on all serial ports.

freeserial ("port") releases the hold MATLAB has on the serial port
specified by port. port can be a cell array of strings.

freeserial (obj) releases the hold MATLAB has on the serial port associated
with the object specified by obj. obj can be an array of serial port objects.

An error is returned if a serial port object is connected to the port that is being
freed. Use the fclose function to disconnect the serial port object from the
serial port.

freeserial is necessary only on Windows platforms. You should use
freeserial if you need to connect to the serial port from another application
after a serial port object has been connected to that port, and you do not want
to exit MATLAB.

Functions
fclose

2-171

fregspace

Purpose

Syntax

Description

See Also

2-172

Determine frequency spacing for frequency response

[f1,f2] = fregspace(n)
[f1,f2] = fregspace([m n])
[x1,yl] = fregspace(..., "meshgrid®)

f = freqgspace(N)
f = freqgspace(N, "whole™)

fregspace returns the implied frequency range for equally spaced frequency
responses. fregspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = fregspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both 1 and f2 are [-n:2:n-2]/n.

[f1,f2] = fregspace([m n]) returns the two-dimensional frequency
vectors 1 and f2 for an m-by-n matrix.
[x1,yl1l] = fregspace(..., "meshgrid") is equivalent to

[f1,f2] fregspace(...);
[x1,y1l] = meshgrid(fl,f2);

f = fregspace(N) returns the one-dimensional frequency vector £ assuming
N evenly spaced points around the unit circle. For Neven or odd, fis (0:2/N:1).
For N even, freqgspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqgspace(N, "whole™) returns N evenly spaced points around the whole
unit circle. In this case, fis 0:2/N:2*(N-1)/N.

meshgrid

frewind

Purpose
Syntax

Description

Remarks

See Also

Move the file position indicator to the beginning of an open file
frewind(fid)

frewind(Ffid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Rewinding a fid associated with a tape device may not work even though
frewind does not generate an error message.

fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-173

fscanf

Purpose

Syntax

Description

Remarks

2-174

Read formatted data from file

A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are:

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix
in column order. n can be Inf, but not m.

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be

fscanf

matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Initial % character

%12e

\ N

Field width Conversion
character

Add one or more of these characters between the % and the conversion

character:

An asterisk (*)

A digit string
A letter

Skip over the matched value. If %*d, then the value that
matches d is ignored and does not get stored.

Maximum field width. For example, %10d.

The size of the receiving object; for example, h for short as
in %hd for a short integer, or I for long as in %1d for a long
integer or %lg for a double floating-point number.

Valid conversion characters are:

%c
%d
%e, %F, %g
%i
%0
%s
%u

%X

L---1

Sequence of characters; number specified by field width
Decimal numbers

Floating-point numbers

Signed integer

Signed octal integer

A series of non-white-space characters

Signed decimal integer

Signed hexadecimal integer

Sequence of characters (scanlist)

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white

space.

2-175

fscanf

Examples

See Also

2-176

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.
The example in fprintf generates an ASCII text file called exp . txt that looks
like:

0.00 1.00000000

0.10 1.10517092

1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen(“exp.txt");
a = fscanf(fid, "%g %g",[2 inf]) % It has two rows now.

a=a";
fclose(fid)

fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

fscanf (serial)

Purpose

Syntax

Arguments

Description

Read data from the device, and format as text

A = fscanf(obj)
A = fscanf(obj, "format®)
A = fscanf(obj, "format” ,size)

[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

obj A serial port object.

“format” C language conversion specification.

size The number of values to read.

A Data read from the device and formatted as text.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

A = fscanf(obj) reads data from the device connected to obj, and returns it
to A. The data is converted to text using the %c format.

A = fscanf(obj, " format™) reads data and converts it according to format.
format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, o, u, x, X, f, e, E, g,
G, ¢, and s. Refer to the sscanf file 1/0 format specifications or a C manual for
more information.

A = fscanf(obj, "format",size) reads the number of values specified by
size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m—by—n matrix in column
order.

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then A is returned as a row vector. You specify

2-177

fscanf (serial)

Remarks

Example

2-178

the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fscanf is issued.

If you use the help command to display help for fscanf, then you need to
supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command line
until:

= The terminator specified by the Terminator property is read.
= The time specified by the Timeout property passes.

= The number of values specified by size is read.

= The input buffer is filled (unless size is specified)

Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial("COM1™);
fopen(s)

fscanf (serial)

See Also

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf(s, "MEASUREMENT : IMMED:TYPE PK2PK™)
fprintf(s, "MEASUREMENT : IMMED:TYPE?")
fprintf(s, "MEASUREMENT : IMMED - VALUE?*)

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
21

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.

pk2pk = fscanf(s, "%e",14)
pk2pk =
2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgetl, fgets, fopen, fread, strread

Properties

BytesAvai lable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout

2-179

fseek

Purpose
Syntax

Description

Arguments

2-180

Set file position indicator
status = fseek(fid,offset,origin)

status = fseek(fid,offset,origin) repositions the file position indicatorin
the file with the given fid to the byte with the specified offset relative to
origin.

For a file having n bytes, the bytes are numbered from 0 to n-1. The position
immediately following the last byte is the end of the file, or eof, position. You
would seek to the eof position if you wanted to add data to the end of a file.

This figure represents a file having 12 bytes, numbered 0 through 11. The first
command shown seeks to the ninth byte of data in the file. The second
command seeks just past the end of the file data, to the eof position.

01 2 3 4 5 6 7 8 9 10 11 12

d|la|t]|a i|n fli|1]|e [EOF

fseek(fid, 8, "bof") —I |—fseek(fid,O,'eof')

fseek does not seek beyond the end of file, eof, position. If you attempt to seek
beyond eof, MATLAB returns an error status.

fid An integer file identifier obtained from fopen.
offset A value that is interpreted as follows:

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are:
"bof" —1: Beginning of file.
"cof" 0: Current position in file.

fseek

"eof" 1: End of file.

status A returned value that is 0 if the fseek operation is successful
and —1 if it fails. If an error occurs, use the function ferror to
get more information.

Examples This example opens the file testl.dat, seeks to the 20th byte, reads fifty
32-bit, unsigned integers into variable A, and closes the file. It then opens a
second file, test2.dat, seeks to the end-of-file position, appends the data in A
to the end of this file, and closes the file.

fid = fopen(“testl.dat®, "r7);
fseek(fid, 19, "bof");

A = fread(fid, 50, “uint327);
fclose(fid);

fid = fopen(“test2.dat™, "r+%");
fseek(fid, 0, "eof");
fwrite(fid, A, “uint327);
fclose(fid);

See Also fopen, fclose, ferror, fprintf, fread, fscanf, ftell, fwrite

2-181

ftell

Purpose
Syntax

Description

See Also

2-182

Get file position indicator
position = ftell(fid)

position = ftell(fid) returns the location of the file position indicator for
the file specified by Fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of —1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

full

Purpose
Syntax

Description

Remarks

Examples

See Also

Convert sparse matrix to full matrix

A = Full(S)

A = full(S) converts a sparse matrix S to full storage organization. If Sis a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then ful 1(X)
requires space to store m*n real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than ful 1(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and ful 1 (S) require about the same number of bytes of storage.

S = sparse(+(rand(200,200) < 2/3));

A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array
S 200X200 318432 double array (sparse)

sparse

2-183

fullfile

Purpose

Syntax

Description

Examples

See Also

2-184

Build a full filename from parts

fullfile(*dirl", " dir2",.__, "filename")
f = fullfile("dirl®,"dir2",.. ., "filename®)

fullfile(dirl,dir2, ..., Ffilename) builds a full filename from the
directories and filename specified. This is conceptually equivalent to

f = [dirl dirsep dir2 dirsep ... dirsep Filename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator.
To create the full filename from a disk name, directories, and filename,

f = fullfile("C: ", "Applications”, "matlab”, "myfun.m")
f =
C:\Applications\matlab\myfun.m

The following examples both produce the same result on UNIX, but only the
second one works on all platforms.

fullfile(matlabroot, "toolbox/matlab/general/Contents.m") and

fullfile(matlabroot, "toolbox", "matlab”, "general ", "Contents.m")

Tileparts, genpath

func22str

Purpose
Syntax

Description

Examples

See Also

Constructs a function name string from a function handle
s = func2str(fhandle)
func2str(fhandle) constructs a string, s, that holds the name of the function

to which the function handle, fhandle, belongs.

When you need to perform a string operation, such as compare or display, on a
function handle, you can use func2str to construct a string bearing the
function name.

To create a function name string from the function handle, @humps

funname = func2str(@humps)

funname
humps

function_handle, str2func, functions

2-185

function

Purpose

Description

2-186

Function M-files

You add new functions to the MATLAB vocabulary by expressing them in
terms of existing functions. The existing commands and functions that
compose the new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character, and has a filename
extension of .m. The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(X);

mean = sum(x)/n;

stdev = sqrt(sum((x-mean).”2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)

n = length(x);

mean = avg(x,n);

stdev = sgrt(sum((x-avg(x,n)).-"2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

function

See Also

Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. In general, if you input the name of something to
MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.

2 Checks to see if the name is an internal function (eig, sin) that was not
overloaded.

3 Checks to see if the name is a local function (local in sense of multifunction
file).

4 Checks to see if the name is a function in a private directory.

5 Locates any and all occurrences of function in method directories and on the
path. Order is of no importance.

At execution, MATLAB:

6 Checks to see if the name is wired to a specific function (2, 3, & 4 above)

7 Uses precedence rules to determine which instance from 5 above to call (we
may default to an internal MATLAB function). Constructors have higher
precedence than anything else.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

nargin, nargout, pcode, varargin, varargout, what

2-187

function_handle (@)

Purpose
Syntax

Description

Remarks

Examples

2-188

MATLAB data type that is a handle to a function
handle = @functionname

handle = @functionname returns a handle to the specified MATLAB function.

A function handle captures all the information about a function that MATLAB
needs to execute that function. Typically, a function handle is passed in an
argument list to other functions. The receiving functions can then execute the
function through the handle that was passed in. Always use feval to execute,
or evaluate, a function through its function handle.

When creating a function handle, the function you specify must be on the
MATLAB path and in the current scope. This condition does not apply when
you evaluate the function handle. You can, for example, execute a subfunction
from a separate (out of scope) M-file using a function handle, as long as the
handle was created within the subfunction’s M-file (in scope).

For nonoverloaded functions, subfunctions, and private functions, a function
handle references just the one function specified in the @functionname syntax.

When you evaluate an overloaded function through its handle, the arguments
the handle is evaluated with determine the actual function that MATLAB
dispatches to.

The function handle is a standard MATLAB data type. As such, you can
manipulate and operate on function handles in the same manner as on other
MATLAB data types. This includes using function handles in arrays,
structures, and cell arrays.

Function handles enable you to do all of the following:

= Pass function access information to other functions

= Allow wider access to subfunctions and private functions
= Ensure reliability when evaluating functions

= Reduce the number of files that define your functions

= Improve performance in repeated operations

The following example creates a function handle for the humps function and
assigns it to the variable, fhandle.

function_handle (@)

See Also

fhandle = @humps;

Pass the handle to another function in the same way you would pass any
argument. This example passes the function handle just created to fminbnd,
which then minimizes over the interval [0.3, 1].

x = fminbnd(fhandle, 0.3, 1)
X =
0.6370

The fminbnd function evaluates the @humps function handle using feval. A
small portion of the fminbnd M-file is shown below. In line 1, the funfcn input
parameter receives the function handle, @humps, that was passed in. The feval
statement, in line 113, evaluates the handle.

1 function [xFf,fval,exitflag,output] = ...
fminbnd(funfcn,ax,bx,options,varargin)

113 fx = feval (funfcn,x,varargin{:});

str2func, func2str, functions

2-189

functions

Purpose
Syntax

Description

Remarks

Examples

See Also

2-190

Return information about a function handle

f = functions(funhandle)

f = functions(funhandle) returns, in a MATLAB structure, the function
name, type, filename, and other information for the function handle stored in
the variable, funhandle.

Note The functions function is provided for querying and debugging
purposes. Its behavior may change in subsequent releases, so it should not be
relied upon for programming purposes.

For handles to functions that overload one of the MATLAB classes, like double
or char, the structure returned by functions contains an additional field
named methods. The methods field is a substructure containing one fieldname
for each MATLAB class that overloads the function. The value of each field is
the path and name of the file that defines the method.

To obtain information on a function handle for the deblank function,

f
f

functions(@deblank)

function: “"deblank®

type: “overloaded~

file: "matlabroot\toolbox\matlab\strfun\deblank.m*"
methods: [1x1 struct]

function_handle

funm

Purpose

Syntax

Description

Examples

Algorithm

Evaluate general matrix function

F = funm(A,fun)
[F,esterr] = funm(A,fun)

F = funm(A, fun) for a square matrix argument A, evaluates the matrix
version of the function fun. For matrix exponentials, logarithms and square
roots, use expm(A), logm(A) and sgrtm(A) instead.

[F,esterr] = funm(A,fun) does not print any message, but returns a very
rough estimate of the relative error in the computed result.

If Ais symmetric or Hermitian, then its Schur form is diagonal and funm is able
to produce an accurate result.

L = logm(A) uses funm to do its computations, but it can get more reliable error
estimates by comparing expm(L) with A. S = sqrtm(A) and E = expm(A) use
completely different algorithms.
Example 1. fun can be specified using @:

F = funm(magic(3),@sin)
is the matrix sine of the 3-by-3 magic matrix.
Example 2. The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

E = expm(i*X);

C = real(BE);
S = imag(E);
In either case, the results satisfy S*S+C*C = 1, where I = eye(size(X)).-

funm uses a potentially unstable algorithm. If A is close to a matrix with
multiple eigenvalues and poorly conditioned eigenvectors, funm may produce
inaccurate results. An attempt is made to detect this situation and print a

2-191

funm

See Also

References

2-192

warning message. The error detector is sometimes too sensitive and a message
is printed even though the the computed result is accurate.

The matrix functions are evaluated using Parlett’s algorithm, which is
described in [1].

expm, logm, sqrtm, function_handle (@)

[1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

fwrite

Purpose

Syntax

Description

Examples

See Also

Write binary data to a file

count = fwrite(fid,A,precision)
count = fwrite(fid,A,precision,skip)

count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified precision. The data
is written to the file in column order, and a count is kept of the number of
elements written successfully.

fid is an integer file identifier obtained from fopen, or 1 for standard output or
2 for standard error.

precision controls the form and size of the result. See fread for a list of
allowed precisions. For "bitN" or "ubitN" precisions, fwrite sets all bits in A
when the value is out-of-range.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc. until all of A is written. If precision
is a bit format like "bitN" or "ubitN", skip is specified in bits. This is useful
for inserting data into noncontiguous fields in fixed-length records.

For example,

fid = fopen("magic5.bin","wb*®);
fwrite(fid,magic(b), "integer*4-)

creates a 100-byte binary file, containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

2-193

fwrite (serial)

Purpose

Syntax

Arguments

Description

Remarks

2-194

Write binary data to the device

fwrite(obj,A)

fwrite(obj,A, "precision”®)
fwrite(obj,A, ’mode*)
fwrite(obj,A, "precision”,’mode")

obj A serial port object.
A The binary data written to the device.

"precision” The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

"mode " Specifies whether data is written synchronously or
asynchronously.

fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A, "precision®) writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A, "mode™) writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A, "precision”, "mode™) writes binary data with precision
specified by precision and command line access specified by mode.

Before you can write data to the device, it must be connected to obj with the

fopen function. A connected serial port object has a Status property value of
open. Anerror is returned if you attempt to perform a write operation while obj
is not connected to the device.

fwrite (serial)

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fwrite, then you need to
supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations

By default, data is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

= The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

= The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.
Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when:

= The specified data is written.
= The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write operations.

2-195

fwrite (serial)

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character
Integer int8 8-bit integer
intl6é 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uintl6 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer

Floating-point single
float32
float
double

float64

32-bit floating point
32-bit floating point
32-bit floating point
64-bit floating point
64-bit floating point

2-196

fwrite (serial)

See Also Functions
fopen, fprintf

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

2-197

fzero

Purpose

Syntax

Description

2-198

Find zero of a function of one variable

x = Fzero(fun,x0)

x = Fzero(fun,x0,options)

x = fzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar. The
value x returned by fzero is near a point where fun changes sign, or NaN if the
search fails. In this case, the search terminates when the search interval is
expanded until an Inf, NaN, or complex value is found.

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not
true. Calling fzero with such an interval guarantees fzero will return a value
near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

Display Level of display. "off" displays no output; "iter~ displays
output at each iteration; “final " displays just the final
output; "notify" (default) dislays output only if the function
does not converge.

TolX Termination tolerance on x.

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments
passed to the function, fun. Use options = [] as a placeholder if no options
are set.

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

fzero

Arguments

Examples

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

>0 Indicates that the function found a zero x.

<0 No interval was found with a sign change, or a NaN or Inf function
value was encountered during search for an interval containing a
sign change, or a complex function value was encountered during
the search for an interval containing a sign change.

[x,fval ,,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

output.algorithm The algorithm used
output.funcCount The number of function evaluations

output.iterations The number of iterations taken

Note For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

fun is the function whose zero is to be computed. It accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle.

x = Ffzero(@myfun,x0)
where myfun is a MATLAB function such as

function ¥ = myfun(xX)
f= ... % Compute function value at x

fun can also be an inline object.
x = Ffzero(inline("sin(x*x)"),x0);

Other arguments are described in the syntax descriptions above.

Example 1. Calculate 1 by finding the zero of the sine function near 3.

2-199

fzero

Algorithm

Limitations

2-200

X
1

fzero(@sin,3)

3.1416

Example 2. To find the zero of cosine between 1 and 2

X
X =

fzero(@cos,[1 2])

1.5708
Note that cos(1) and cos(2) differ in sign.
Example 3. To find a zero of the function f(x) = x3-2x-5
write an M-file called f.m.

function y = f(X)
y = X."N3-2*x-5;

To find the zero near 2

fzero(@f,2)

V4
Z =
2.0946

Because this function is a polynomial, the statement roots([1 0 -2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

The fzero command is an M-file. The algorithm, which was originated by

T. Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

The fzero command finds a point where the function changes sign. If the
function is continuous, this is also a point where the function has a value near
zero. If the function is not continuous, fzero may return values that are
discontinuous points instead of zeros. For example, fzero(@tan, 1) returns
1.5708, a discontinuous point in tan.

fzero

Furthermore, the fzero command defines a zero as a point where the function
crosses the x-axis. Points where the function touches, but does not cross, the
x-axis are not valid zeros. For example, y = x.”~2 is a parabola that touches the
x-axis at 0. Because the function never crosses the x-axis, however, no zero is
found. For functions with no valid zeros, fzero executes until Inf, NaN, or a
complex value is detected.

See Also roots, fminbnd, function_handle (@), inline, optimset
References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

2-201

gallery

Purpose Test matrices

Syntax [A.B,C,...] = gallery("tmfun~,P1,P2,...)
gallery(3) abadly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

Description [A,B,C,...] = gallery("tmfun~,P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2, ... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2, ... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.

Test Matrices

cauchy chebspec chebvand chow
circul clement compar condex
cycol dorr dramadah fiedler
forsythe frank gearmat grcar
hanowa house invhess invol
ipjfact jordbloc kahan kms
krylov lauchli lehmer leslie
lesp lotkin minij moler
neumann orthog parter pei
poisson prolate randcolu randcorr
rando randhess randsvd redheff
riemann ris rosser smoke

2-202

gallery

Test Matrices (Continued)

toeppd tridiag triw vander

wathen wi Ik

cauchy—Cauchy matrix

C = gallery("cauchy”,x,y) returns an n-by-n matrix,
C(i,J) = 1/7(x(D)+y(@)). Arguments x and y are vectors of length n. If you
pass in scalars for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery("cauchy",x) returns the same as above withy = x. That is, the
command returns C(i,j) = 1/(x(i)+x()).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and

0 <y@) < ... <y(m.
chebspec—Chebyshev spectral differentiation matrix

C = gallery(~chebspec”,n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C*n = 0) and has
the null vector ones(n,1). The matrix C is similar to a Jordan block of size n
with eigenvalue zero.

For switch =1, Cis nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials
C = gallery("chebvand",p) produces the (primal) Chebyshev Vandermonde

matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

2-203

gallery

2-204

C = gallery(“chebvand",m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If pis a vector, then C(i, j)= T;_4(p(]j)) whereT,_, is the Chebyshev
polynomial of degree i-1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery("chow",n,alpha,delta) returns A such that

A = H(alpha) + delta*eye(n),where H;. J-(cx): or(' A and argumentnis
the order of the Chow matrix. Default value for scalars alpha and delta are
1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of
the eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))"2, k=1:n-p.

circul—Circulant matrix

C = gallery(circul",v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If vis ascalar, then C = gallery("circul”,1:v).

The eigensystem of C (n-by-n) is known exglicitly:llf t is an nth root of unity,
then the inner productofvandw = [1t t ...t(n B)] is an eigenvalue of C and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery(“clement”,n,sym) returns an n-by-n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n-1, n-3, n-5, .. ., as well as (for odd n) a
final eigenvalue of 1 or 0.

gallery

Argument sym determines whether the Clement matrix is symmetric. For
sym = O (the default) the matrix is nonsymmetric, while for sym = 1, itis
symmetric.

compar—Comparison matrices

A = gallery("compar™,A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar (A, 1) is too.

gallery(“compar”,A) is diag(B) - tril(B,-1) - triu(B,1), where
B = abs(A). compar(A) is often denoted by M(A) in the literature.

gallery("compar”,A,0) is the same as gallery(~compar" ,A).

condex—Counter-examples to matrix condition number estimators

A = gallery("condex",n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k:

k =1 4-by-4 LINPACK

k =2 3-by-3 LINPACK

k =3 arbitrary LINPACK (rcond) (independent of theta)

k =4 n>= 4 LAPACK (RCOND) (default). It is the inverse of

this matrix that is a counter-example.

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically
A = gallery(“cycol”,[m n],k) returns an m-by-n matrix with cyclically

repeating columns, where one “cycle” consists of randn(m, k). Thus, the rank of
matrix A cannot exceed k, and k must be a scalar.

2-205

gallery

2-206

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery("cycol”,n,k), where n is a scalar, is the same as
gallery(“cycol”,[n n],k).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c,d,e]l = gallery("dorr”,n,theta) returns the vectors defining an n-by-n,
row diagonally dominant, tridiagonal matrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery(“tridiag”,c,d,e).

A = gallery("dorr=,n,theta) returns the matrix itself, rather than the
defining vectors.

dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery("dramadah”,n,k) returns an n-by-n matrix of 0’s and 1's for
which mu(A) = norm(inv(A), "fro") is relatively large, although not
necessarily maximal. An anti-Hadamard matrix A is a matrix with elements
0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

k =1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)"n, where c is a constant. The inverse of A has
integer entries.

k =2 A is upper triangular and Toeplitz. The inverse of A has integer
entries.

k =3 A has maximal determinant among lower Hessenberg (0,1)
matrices. det(A) = the nth Fibonacci number. A is Toeplitz. The
eigenvalues have an interesting distribution in the complex plane.

gallery

fiedler—Symmetric matrix

A = gallery(~fiedler~,c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery("fiedler=,1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic
Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and
Academic Press, New York, 1977, p. 159] and attributed to Fiedler. These
indicate that inv(A) is tridiagonal except for nonzero (1,n) and (n,1)
elements.

forsythe—Perturbed Jordan block

A = gallery(~forsythe",n,alpha, lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha.
The default values of scalars alpha and lambda are sqrt(eps) and 0,
respectively.

The characteristic polynomial of A is given by:

det(A-t*1) = (lambda-t)™N - alpha*(-1)"n.
frank—Matrix with ill-conditioned eigenvalues

F = gallery("frank",n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery("gearmat”,n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the

2-207

gallery

2-208

(n,n+1-abs(j)) position, and zeros everywhere else. Arguments i and j
default to n and -n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2*a), ..., sin(w+n*a)], where a and w are given in
Gear, C. W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math.
Comp., Vol. 23 (1969), pp. 119-125.

grcar—Toeplitz matrix with sensitive eigenvalues

A = gallery("grcar”,n,k) returns an n-by-n Toeplitz matrix with -1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.

hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane
A = gallery("hanowa",n,d) returns an n-by-n block 2-by-2 matrix of the
form:

[d*eye(m) -diag(1:m)
diag(1l:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues of the
form d £ k*i, for 1 <= k <= m. The default value of d is -1.

house—Householder matrix

[v,beta,s] = gallery("house~,x,k) takes x, an n-element column vector,
and returns V and beta such that H*x = s*el. In this expression, el is the first
column of eye(n), abs(s) = norm(x), andH = eye(n) - beta*V*V" isa
Householder matrix.

k determines the sign of s:

k=0 sign(s) = -sign(x(1)) (default)
k=1 sign(s) = sign(x(1))
k=2 sign(s) = 1 (x must be real)

gallery

If x is complex, then sign(x) = x./abs(x) when x is honzero.

If x = 0,0rifx = alpha*el (alpha >= 0)andeitherk = 1ork = 2,thenVv = 0,
beta = 1,and s = x(1). In this case, H is the identity matrix, which is not
strictly a Householder matrix.

invhess—Inverse of an upper Hessenberg matrix

A = gallery("invhess”,x,y), where x is a length n vector and y is a length
n-1 vector, returns the matrix whose lower triangle agrees with that of
ones(n,1)*x" and whose strict upper triangle agrees with that of

[1 yl*ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to -x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol—Involutory matrix

A = gallery("invol*",n) returns an n-by-n involutory (A*A = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hi lb(n).

B = (eye(n)-A)/2and B = (eye(n)+A)/2 are idempotent (B*B = B).
ipjfact—Hankel matrix with factorial elements
[A,d] = gallery("ipjfact”,n,k) returns A, an n-by-n Hankel matrix, and d,

the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of Aare A(i,j) = (i+j)! Ifk = 1, then the elements of A are

AC(ELJ) = 1/(i+)).
Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery("jordbloc",n, lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

2-209

gallery

2-210

kahan—Upper trapezoidal matrix

A = gallery("kahan",n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If nis a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pert*eps*diag([n:-1:1]). The default pert is 25, which ensures no
interchanges for gallery("kahan®,n) up to at least n = 90 in IEEE arithmetic.

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery("kms~,n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho~(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

< An LDL' factorization with L = inv(gallery("triw",n,-rho,1))", and
D(i,i) = (1-abs(rho)”2)*eye(n), exceptD(1,1) = 1.

= Positive definite if and only if 0 < abs(rho) < 1.

=« The inverse inv(A) is tridiagonal.

krylov—Krylov matrix

B = gallery("krylov™,A,x,j) returns the Krylov matrix
[x, Ax, A™2x, ..., A~(d-1)X]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1),and j = n.

B = gallery("krylov",n) is the same as gallery("krylov", (randn(n)).

gallery

lauchli—Rectangular matrix

A = gallery("lauchli~,n,mu) returns the (n+1)-by-n matrix
[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A**A. Argument mu defaults to

sqgrt(eps).
lehmer—Symmetric positive definite matrix

A = gallery("lehmer=,n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

= Ais totally nonnegative.
= The inverse inv(A) is tridiagonal and explicitly known.
« The order n <= cond(A) <= 4*n*n.

leslie—

L = gallery("leslie",a,b) is the n-by-n matrix from the Leslie population
model with average birth numbers a(1:n) and survival rates b(1:n-1). Itis
zero, apart from the first row (which contains the a(i)) and the first
subdiagonal (which contains the b(i)). For a valid model, the a(i) are
nonnegative and the b(i) are positive and bounded by 1, i.e.,0 < b(i) <= 1.

L
b

gallery(~leslie”,n) generates the Leslie matrix with a = ones(n, 1),
ones(n-1,1).

lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery("lesp”,n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [-2*N-3.5, -4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix

2-211

gallery

2-212

with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with D = diag(1!,2!,...,n1).

lotkin—Lotkin matrix

A = gallery("lotkin",n) returns the Hilbert matrix with its first row
altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude. Its inverse has integer
entries and is known explicitly.

minij—Symmetric positive definite matrix

A = gallery("minij",n) returns the n-by-n symmetric positive definite
matrix with A(i, j) = min(i,j)-

The minij matrix has these properties:

= The inverse inv(A) is tridiagonal and equal to -1 times the second difference
matrix, except its (n,n) element is 1.

= Givens’ matrix, 2*A-ones(size(A)), has tridiagonal inverse and
eigenvalues 0.5*sec((2*r-1)*pi/(4*n))"2, where r=1:n.

< (n+1)*ones(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery("moler*”,n,alpha) returns the symmetric positive definite
n-by-n matrix U**U, where U = gallery("triw",n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2,and A(i,i) = i.Oneofthe
eigenvalues of A is small.

neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery(“neumann®,n) returns the sparse n-by-n singular, row
diagonally dominant matrix resulting from discretizing the Neumann problem
with the usual five-point operator on a regular mesh. Argument n is a perfect
square integer n = m? or a two-element vector. C is sparse and has a
one-dimensional null space with null vector ones(n, 1).

gallery

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery("orthog”,n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

Q(i,J) = sqrt(2/(n+1)) * sin(i*j*pi/(n+l))
Symmetric eigenvector matrix for second difference matrix. This is
the default.

Q(i,J) = 2/(sqrt(2*n+1)) * sin(@@*i*j*pi/(2*n+1))
Symmetric.

Q(r,s) = exp*pi*i*(r-1)*(s-1)/n) 7/ sqgrt(n)

Unitary, the Fourier matrix. Q™4 is the identity. This is essentially
the same matrix as fft(eye(n))/sqrt(n)!

Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

Q(i,J) = sin(@*pi*(i-1)*J-1)/n) +
cos(2*pi*(i-1)*{J-1)/n)

Symmetric matrix arising in the Hartley transform.

Q(i,jJ) = sgrt(2/n)*cos((i-1/2)*(G-1/2)*pi/n)

Symmetric matrix arising as a discrete cosine transform.

Q(i,J) = cos((i-1)*g-1)*pi/(n-1))

Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).

Q(i,j) = cos((i-1)*(-1/2)*pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).

parter—Toeplitz matrix with singular values near pi

C = gallery("parter*,n) returns the matrix C such that
C(i,j) = 1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are
very close to pi.

2-213

gallery

2-214

pei—Pei matrix

A = gallery("pei~,n,alpha), where alphais ascalar, returns the symmetric
matrix alpha*eye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or -n.

poisson—BIlock tridiagonal matrix from Poisson's equation (sparse)

A = gallery("poisson”,n) returns the block tridiagonal (sparse) matrix of
order n”~2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery("prolate”,n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If0 < w < 0.5 then A is positive definite

= The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

« The default value of w is 0.25.

randcolu — Random matrix with normalized cols and specified singular
values

A = gallery("randcolu”,n) is a random n-by-n matrix with columns of unit
2-norm, with random singular values whose squares are from a uniform
distribution.

A"*A is a correlation matrix of the form produced by gallery(~“randcorr=,n).

gallery("randcolu”,x) where x is an n-vector (n > 1), produces a random
n-by-n matrix having singular values given by the vector x. The vector x must
have nonnegative elements whose sum of squares is n.

gallery(“randcolu”,x,m) where m >= n, produces an m-by-n matrix.

gallery("randcolu”,x,m,k) provides a further option:

gallery

k=0 diag(x) is initially subjected to a random two-sided orthogonal
transformation, and then a sequence of Givens rotations is applied
(default).

k=1 The initial transformation is omitted. This is much faster, but the

resulting matrix may have zero entries.

For more information, see:

[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

randcorr — Random correlation matrix with specified eigenvalues

gallery(“randcorr-,n) is a random n-by-n correlation matrix with random
eigenvalues from a uniform distribution. A correlation matrix is a symmetric
positive semidefinite matrix with 1s on the diagonal (see corrcoef).

gallery(“randcorr*,x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x must
have nonnegative elements summing to length(x).

gallery(“randcorr-,x,k) provides a further option:

k=0 The diagonal matrix of eigenvalues is initially subjected to a
random orthogonal similarity transformation, and then a
sequence of Givens rotations is applied (default).

k=1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have some zero entries.

For more information, see:

[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for
Sampling Experiments,” Commun. Statist. Simulation Comput., B7, 1978,
pp. 163-182.

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

2-215

gallery

randhess—Random, orthogonal upper Hessenberg matrix

H = gallery("randhess",n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery(“randhess",x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

rando—Random matrix composed of elements -1, 0 or 1

A = gallery(“rando”,n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

k=1 A(i,j) = 0or 1 with equal probability (default).
k =2 A(i,j) = -1or 1 with equal probability.
k =3 A(i,j) = -1, 0 or 1 with equal probability.

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

randsvd—Random matrix with preassigned singular values

A = gallery("randsvd",n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is

n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only kI is
present, ku defaults to k1.

Distribution mode can be:

1 One large singular value.
2 One small singular value.
3 Geometrically distributed singular values (default).

2-216

gallery

One large singular value.

Arithmetically distributed singular values.

a N~ R

Random singular values with uniformly distributed logarithm.

< 0 Ifmodeis -1, -2, -3, -4, or -5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, Ais a random, full, symmetric, positive definite matrix with
cond(A) = -kappa and eigenvalues distributed according to mode. Arguments
k1 and ku, if present, are ignored.

A = gallery("randsvd",n,kappa,mode,kl,ku,method) specifies how the

computations are carried out. method = 0 is the default, while method = 1
uses an alternative method that is much faster for large dimensions, even

though it uses more flops.

redheff—Redheffer’s matrix of 1s and Os

A = gallery("redheff~,n) returns an n-by-n matrix of 0's and 1's defined by
A(i,j) = 1,ifj = 1orifi divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

< (n-floor(log2(n)))-1 eigenvalues equal to 1
= A real eigenvalue (the spectral radius) approximately sqrt(n)
= A negative eigenvalue approximately -sqrt(n)

= The remaining eigenvalues are provably “small.”

= The Riemann hypothesis is true if and only if det(A) = O(n
epsilon > 0.

e
2) for every

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(Z) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

2-217

gallery

2-218

riemann—Matrix associated with the Riemann hypothesis

A = gallery("riemann”,n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if

_1.
det(A) = O(n'n 2)
for every €>0.
The Riemann matrix is defined by:
A = B(2:n+1,2:n+1)
where B(i,j) = i-1ifi divides j, and B(i,j) = -1 otherwise.
The Riemann matrix has these properties:
= Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, wherem = n+1.
= i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.
= All integers in the interval (m/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery("ris”,n) returns a symmetric n-by-n Hankel matrix with
elements
A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around /2 and —1/2 . This matrix was invented
by F.N. Ris.

gallery

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the QR algorithm, as perfected by
Wilkinson and implemented in MATLAB, has no trouble with it. The matrix
is 8-by-8 with integer elements. It has:

= A double eigenvalue

= Three nearly equal eigenvalues

= Dominant eigenvalues of opposite sign
=« A zero eigenvalue

= A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery("smoke",n) returns an n-by-n matrix with 1's on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

A = gallery("smoke",n,1) returns the same except that element A(n, 1) is
Zero.

The eigenvalues of gallery(~smoke” ,n,1) are the nth roots of unity; those of
gallery(~smoke~,n) are the nth roots of unity times 2~(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery("toeppd”,n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toepl